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Abstract Algorithms for constraint set satisfiability

and simplification of Haskell type class constraints are

used during type inference in order to allow the in-

ference of more accurate types and to detect ambigu-

ity. Unfortunately, both constraint set satisfiability and

simplification are in general undecidable, and the use of

these algorithms may cause non-termination of type in-

ference. This paper presents algorithms for these prob-

lems that terminate on any given input, based on the

use of a criterion that is tested on each recursive step.

The use of this criterion eliminates the need of im-

posing syntactic conditions on Haskell type class and

instance declarations in order to guarantee termination

of type inference in the presence of multi-parameter

type classes, and allows program compilation without

the need of compiler flags for lifting such restrictions.

Undecidability of the problems implies the existence of

instances for which the algorithm incorrectly reports

unsatisfiability, but we are not aware of any practical

example where this occurs.

Keywords First keyword · Second keyword · More

1 Introduction

Haskell’s type class system [18,5] extends the Hindley-

Milner type system [16] with constrained polymorphic
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types, in order to support overloading. Type class con-

straints may occur in types of expressions involving

overloaded names (or symbols), and restrict the set of

types to which quantified type variables may be instan-

tiated, to those types for which these type constraints

are satisfied, according to types of definitions that exist

in a relevant context.

A type class declaration specifies the name and pa-

rameters of the class, and the principal type of names

which can then be overloaded in instance definitions.

For example:

class Eq a where

(==):: a → a → Bool
(/=):: a → a → Bool

is a declaration of type class Eq , with parameter a, that

specifies the principal types of (==) and (/=). Function

(==) has type ∀ a. Eq a ⇒ a → a → Bool, where con-

straint Eq a indicates that type variable a cannot be

instantiated to an arbitrary type, but only to a type

that has been defined as an instance of class Eq.

An instance of a type class specifies instance types

for type class parameters, and gives definitions of the

overloaded names specified in the class. The type of

each overloaded name in an instance definition is ob-

tained by substituting type class parameters with cor-

responding instance types. For example, the following

instance declarations specify definitions of the equality

operator for types Int and for polymorphic lists, respec-

tively:
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instance Eq Int where

(==) = primEqInt

instance Eq a ⇒ Eq [a] where

[ ] == [ ] = True

(a:x) == (b:y) = a == b && x == y

== = False

For a base type, like Int, a corresponding predefined

operation is provided. The definition of equality for lists

of elements of an arbitrary type uses the equality test

for elements of this type. Constraint Eq a must be spec-

ified as the context for the head Eq [a] of the instance

declaration. A context is a set of type class constraints,

and constraint π is the head of a qualified constraint

P ⇒ π, where P is a set of type class constraints.

As an aside, type classes in Haskell may also contain

default definitions of the overloaded names, in order to

avoid repeating the same definitions in instances.

Class constraints introduced on the types of over-

loaded symbols occur also on the types of expressions

defined in terms of these symbols. For example, con-

sider the following function that tests list membership:

elem a [] = False

elem a (b:x) = a == b || elem a x

The principal type of elem is ∀a.Eq a⇒ a→ [a]→
Bool. Constraint Eq a occurs in the type of elem due to

the use of the equality operator (==) in its definition.

Haskell restricts type classes to have a single param-

eter but the extension to multi-parameter type classes,

called Haskell+mptcs in the sequel, is widely used.

Type inference for constrained type systems rely on

constraint set simplification, which, for the case of type

classes, essentially amounts to performing (so-called)

context reduction. Constraint set simplification yields

equivalent constraint sets, and are useful for providing

simpler types for expressions. Context reduction simpli-

fies constraints by substituting constraints or removing

resolved constraints according to available instance def-

initions, besides removing duplicate constraints or sub-

stituting constraints according to the class hierarchy.

As an example, context Eq[t] is reduced to Eq t,

for any type t, in the presence of instance Eq[a] with

context Eq a.

Improvement [13] is also a process of simplification

of constrained types, but it is of a different nature, and

is used in type inference to avoid ambiguity and to infer

more informative types. Improvement is fundamentally

based on constraint set satisfiability: it is a process of

transforming a constraint set P into a constraint set

obtained by applying a substitution S to P so that the

set of satisfiable instances of P is preserved.

The mechanism of functional dependencies and other

alternatives have been proposed to deal with improve-

ment [14,7,11,10,4], for detection of ambiguity and for

specialization of constrained types in the presence of

multi-parameter type classes. We do not discuss im-

provement specifically in this paper, but focus on con-

straint set satisfiability, which is only used for the im-

plementation of improvement or any alternative ap-

proach.

Unfortunately, both constraint set satisfiability and

simplification are in general undecidable problems [6],

and the use of computable functions for solving these

problems may cause non-termination of type inference.

This paper presents algorithms for constraint set

satisfiability and simplification that use a termination

criterion which is based on a measure of the sizes of

types in type constraints. The sequence of constraints

that unify with a constraint axiom in recursive calls

of the function that checks satisfiability or simplifica-

tion of a type constraint is such that either the sizes

of types of each constraint in this sequence is decreas-

ing or there exists at least one type parameter position

with decreasing size.

The use of this criterion eliminates the need for im-

posing syntactic conditions on Haskell type class and in-

stance declarations in order to guarantee termination of

type inference in the presence of multi-parameter type

classes, and allows program compilation without the

need of compiler flags for lifting such restrictions.

The use of a termination criterion implies that there

exist well-typed programs for which the presented al-

gorithm incorrectly reports unsatisfiability. However,

practical examples where this occurs are expected to

be very rare. The algorithms have been implemented

and tested by using a prototype front-end for Haskell,

available at the mptc github repository. The algorithm

works as expected when subjected to examples men-

tioned in the literature, Haskell libraries that use multi-

parameter type classes and many tests, including those

used by the mostly used Haskell compiler[19], GHC,

involving all pertinent GHC extensions.

Restrictions imposed on class and instance declara-

tions in Haskell, in Haskell+mptcs and in GHC, and

GHC compilation flags used to avoid these restrictions

[20], are summarized in Section 2. Section 3 reviews en-

tailment and satisfiability relations on type class con-

straints. Section 4 gives a definition of a computable

function that returns the set of satisfiable substitutions

of a given constraint set P , when it terminates. Sub-

section 4.1 defines a termination criterion and redefines

this computable function in order to use this criterion.

http://github.com/rodrigogribeiro/mptc
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Section 5 defines a constraint set simplification com-

putable function, based on the same termination crite-

rion. Section 6 concludes.

2 Restrictions over Class and Instance

Declarations

This section summarizes the restrictions imposed on

class and instance declarations in Haskell, Haskell+mptcs

and in GHC, and GHC compilation flags used to avoid

these restrictions.

By default, GHC follows the Haskell language spec-

ification (i.e. the Haskell 98 report [8]), which imposes

the following restrictions.

1. Each class declaration must have exactly one pa-

rameter.

2. The head of a qualified constraint in an instance

declaration must have the form C(T α), where C

denotes a class name, T a type constructor and α

a sequence of distinct type variables. Such overbar

notation is used extensively in this paper: x denotes

a possibly empty sequence of elements in the set

{x1, . . . , xn}, for some n ≥ 0.

3. Each constraint in a context P of an instance dec-

laration P ⇒ C τ must have the form C a, where a

is a type variable occurring in τ .

Restriction 1 allows only single parameter type classes,

but multi-parameter type classes are widely used by

programmers and in Haskell libraries and are supported

in many Haskell implementations. For example, con-

sider type class Map parameterized by the key and el-

ement types, and the type class Collection, parameter-

ized by the type constructor and the type of elements

of the collection, partly sketched below:

class Eq a ⇒ Collection c a where

empty:: c a

insert, delete:: a -> c a -> c a

member:: a -> c a -> Bool

...

instance Show (Tree Int) where ... is an exam-

ple of an instance declaration that does not follow re-

striction (2), because the head of the constraint (which

has an empty context) consists of type constructor Tree

applied to Int , not to a type variable.

Flag -XFlexibleInstances can be used by GHC

users to avoid enforcing condition (2), i.e. to allow the

head of a constraint in an instance declaration to be ar-

bitrarily nested. The next is an example that does not

follow restriction (3), since s a is not just a type vari-

able: instance Show (s a) ⇒ Show (Sized s a)...

Instances that do not follow these restrictions are

common in Haskell programs, specially in the presence

of multi-parameter type classes.

Flag -XFlexibleContexts can be used by GHC

users to avoid restriction (3). With the use of this flag,

contexts are restricted as follows:

1. No type variable can have more occurrences in a

constraint of a context than in the head.

2. The sum of the number of occurrences of type vari-

ables and type constructors in a context must be

smaller than in the head.

This restriction is known as the Paterson Condition.

In some cases, it is still over restrictive. As an example,

consider the following code:

data Rose f a = Rose (f (Rose f a))

instance (Show (f (Rose f a)), Show a) ⇒
Show (Rose f a) where ...

This instance of Show is rejected by GHC because it

has more occurrences of type variable f in a constraint

than in the head. Flag -XUndecidableInstances, which

lifts all restrictions (including those related to the use

of functional dependencies), is needed to compile this

code. With this flag, termination is ensured by impos-

ing a depth limit on a recursion stack [20].

3 Constrained polymorphism and type class

constraints

The Haskell type class system is based on the more

general theory of qualified types [12], which extends the

Hindley-Milner type system with constrained types.

The syntax of types with type class constraints is de-

fined in Figure 1, where meta-variable usage is also in-

dicated. For simplicity, and following common practice,

kinds are not considered explicitly in type expressions,

and type applications are assumed to be well kinded.

Function types τ1 → τ2 are constructed as the curried

application of the function type constructor to two ar-

guments, and are written as usual in infix notation.

The union of constraint sets P and Q is denoted by

P,Q and a slight abuse of notation is made by writing

simply π for the singleton constraint set {π}.
Function tv is overloaded, yielding the set of free

type variables of types, constraints or constraint sets,

and is defined as usual. Sequence α used in the con-

text of a set denotes of course the set of type vari-

ables in the sequence. The set of constraint axioms
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Type constructor T
Class name C
Type variable α, β

Type τ ::= α | T | τ τ
Type constraint π ::= C τ
Constraint set Q,P ::= ∅ | π,Q
Type scheme σ ::= ∀α.Q⇒ τ

Constraint axioms Θ ::= ∅ | ∀α.Q⇒ π, Θ

Fig. 1 Constrained types and Context

Θ,P 
 Q

Q ⊆ P
Θ,P 
 Q

Mono
Θ,P 
 P ′ Θ,Q 
 Q′

Θ,P,Q 
 P ′ , Q′
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Θ,P 
 Q

Θ,SP 
 SQ
Subst

(∀α. P ⇒ π) ∈ Θ
Θ,P 
 π

Inst

Θ,P 
 Q′ Θ,Q′ 
 Q

Θ,P 
 Q
Trans

Fig. 2 Type Class Constraint Entailment

Θ is induced by class and instance declarations of a

program. Each instance declaration instance P ⇒ π

where ... introduces an axiom scheme ∀α. P ⇒ π,

where α = tv(P ⇒ π).

For simplicity and to avoid clutter, in this paper

constraint axioms introduced by type class declarations

are not considered, since they add no additional prob-

lems with respect to termination of constraint set sat-

isfiability and simplification algorithms.

The entailment relation for type class constraints is

defined in Figure 2. Rule (Mono) expresses the property

of monotonicity, (Conj) of transitivity, (Subst) of clo-

sure under type substitution (cf. [12]), (Inst) defines

entailment according to a constraint axiom and (Conj)

deals with sets with more than one constraint.

A type substitution S is a (kind-preserving) func-

tion from type variables to types, and extends straight-

forwardly to constraints, and to sets of types and sets

of constraints. For convenience, a substitution is often

written as a finite mapping [α1 7→ τ1, . . . , αn 7→ τn],

which is also abbreviated as [α 7→ τ]. Juxtaposition

S′S is used as a synonym for function composition,

S′ ◦ S, the domain of a substitution S is defined by

dom(S) = {α | S(α) 6= α} and the restriction of S to

V is given by S|V (α) = S(α) if α ∈ V , otherwise α.

3.1 Constraint Set Satisfiability

Constraint set satisfiability is central to the interpre-

tation of constrained types and is closely related to

simplification and improvement. Following [13], bP cΘ
denotes the set of satisfiable instances of constraint set

P , with respect to constraint axioms Θ:

bP cΘ = {SP | Θ 
 SP }

Equality of constraint sets is considered modulo type

variable renaming. That is, constraint sets P and Q are

considered to be equal by considering also that a renam-

ing substitution S can be applied to P so as to make

S P and Q equal. A substitution S is a renaming sub-

stitution if for all α ∈ dom(S) we have that S(α) = β,

for some type variable β 6∈ dom(S).

If SP ∈ bP cΘ then S is called a satisfying substitu-

tion for P .

Subscript Θ will not be used hereafter because sat-

isfiability is always considered with respect to a set of

global constraint axioms Θ.

For any substitution S and constraint set P we have

that bSP c ⊆ bP c. The reverse inclusion, bP c ⊆ bSP c,
does not always hold, and allow us to characterize im-

provement of the set of constraints P to an equivalent

but simpler or more informative constraint set SP , such

that bSP c = bP c. Substitution S is called an improving

substitution for P if applying S to P preserves the set

of satisfiable instances, that is, if bSP c = bP c.
The next section presents constraint set satisfiabil-

ity algorithms, including an algorithm that uses a cri-

terion for guaranteeing termination on any given input.

This termination criterion is used in section 5, to define

a constraint set simplification algorithm.

4 Computing Constraint Set Satisfiability

Figure 3 presents a computable function that, given any

constraint set P , returns, if it terminates, the set of sat-

isfying substitutions for P . The definition uses judge-

ments of the form Θ `sats P  S, meaning that S is

the set of satisfying substitutions for P , with respect to

constraint axioms Θ. The following function is used:

sats(π,Θ) = { (S|tv(π), SP, π0) | (∀α. P0 ⇒ π0) ∈ Θ,
S1 = [α 7→ β], β fresh,

(P ⇒ π′) = S1 (P0 ⇒ π0),

S = mgu(π = π′)}

where function mgu gives a most general unifier for

a pair of constraints, written as an equality. That is,

mgu(C τ = C τ ′) gives a substitution S such that, S τ =
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Θ `sats P  S

Θ `sats ∅ {id}
SEmpty

Θ `sats π  S0
S = {S′S | S ∈ S0, S′ ∈ S1, Θ `sats SP  S1}

Θ `sats π, P  S
SConj

∆ = sats(π,Θ)

S = {S′S | (S,Q, π′) ∈ ∆, S′ ∈ S0, Θ `sats Q S0}
Θ `sats π  S

SInst

Fig. 3 Constraint Set Satisfiability

S τ ′ and, for any S′ such that S′ τ = S′ τ ′, it holds that

S′ = S′′ ◦ S, for some S′′.1

Let S be the returned set of satisfying substitu-

tions for a given constraint P . Since S ∈ S implies

dom(S) ⊆ tv(P ) — because if S is in sats(π,Θ) then

dom(S) ⊆ tv(π) —, the only possible satisfying substi-

tution to be returned for the empty set of constraints is

the identity substitution (id), as defined by rule SEmpty.

Rule SInst computes the set S0 of satisfying substitu-

tions S ∈ S0 for a given constraint π, by determining

the set of constraint axioms ∀α. P0 ⇒ π0 in Θ such

that π unifies with π0, and composing these substitu-

tions with those obtained by recursively computing the

set of satisfying substitutions for contexts S P0. Rule

SConj deals with sets of constraints. The following ex-

amples illustrate the use of these rules.

B, I and F are used in the sequel as abbreviations of

Bool , Int and Float , respectively.

Example 1 Consider P = {Aa b, D b} and

Θ = {A I [I], A I [B], C I,∀b. C b⇒ D [b]}

Satisfiability of P with respect to Θ yields a set of sub-

stitutions S given by:

Θ `sats Aa b S0
S =

{
S′S | S ∈ S0, S′ ∈ S1, Θ `sats S(D b) S1

}
Θ `sats Aa b, {D b}  S

SConj

Then:

∆0 = {(S1, ∅, A I [I]), (S2, ∅, A I [B])}
S0 =

{
S′S | (S,Q, π′) ∈ ∆0, S

′ ∈ S′,
Θ `sats Q S′

}
Θ `sats Aa b S0

SInst

1 See, for example, [2], for the general theory of unification
and algorithms for computing a most general unifier for a set
of term equalities.

where S1 = [a 7→ I, b 7→ [I]], S2 = [a 7→ I, b 7→ [B]].

Then, by rule SConj, the set of satisfying substitu-

tions for S1(D b) = D [I] and S2(D b) = D [B] must

be computed, and are given respectively by:

∆1 = {(S′
1|∅, {C I}, D [b])}

S11 =
{
S′S | (S,Q, π′) ∈ ∆1, S

′ ∈ S′,
Θ `sats Q S′

}
Θ `sats D [I] S11

SInst

where S′
1 = [b1 7→ I], b1 is a fresh type variable, S′

1|∅ =

id , and

∆2 = {(S′
2|∅, {C B}, D [b])}

S21 =
{
S′S | (S,Q, π′) ∈ ∆2, S

′ ∈ S′,
Θ `sats Q S′

}
Θ `sats D [B] S21

SInst

where S′
2 = [b2 7→ B], b2 is a fresh type variable, S′

2|∅ =

id . Now, S11 = {id} and S21 = ∅. Thus, S = {S1}.

The example below, extracted from [3], illustrates

non-termination of the computation of the set of satis-

fying substitutions by the function defined in Figure 3.

We use T 2 τ to abbreviate T (T τ) and similarly for

other indices greater than 2.

Example 2 Let Θ = {∀a, b. {C a b} ⇒ C (T 2 a) b} and

consider computing satisfiability of π = C a (T a) with

respect to Θ.

We have that π unifies with the head of constraint

axiom ∀a, b. (C a b) ⇒ C (T 2 a) b, giving substitution

S = [a 7→ T 2 a1, b1 7→ T 3 a1]. We must then recursively

compute the set of satisfying substitutions of constraint

S(C a1 b1) = C a1 (T 3 a1). This constraint also unifies

with ∀a, b. (Cab)⇒ C (T 2a)b, giving substitution S1 =

[a1 7→ (T 2 a2), b2 7→ (T 3a1 = T 5 a2)]. Again, we must

recursively compute the set of satisfying substitutions

of constraint S1(Ca2 b2) = Ca2 (T 5a2), and the process

goes on forever.

The following theorems state respectively correct-

ness and completeness of the constraint set satisfiabil-

ity algorithms presented in Figure 3, with respect to

the entailment relation.

Theorem 1 (Correctness of `sats) If Θ `sats P  
S then Θ 
 S P , for all S ∈ S.

Proof: By induction over the derivation of Θ `sats P  
S. The only interesting case is for rule SInst. Let π =

C τ and ∆ = sats(π,Θ). If ∆ = ∅, the theorem holds

trivially. Thus, assume ∆ 6= ∅ and let (S,Q,C τ0) ∈ ∆.

By the definition of sats, this means that ∀α. P0 ⇒
C τ0 ∈ Θ, where α = tv(P0 ⇒ C τ0), and P ′ ⇒
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C τ = [α 7→ β ]P0 ⇒ C τ0. By rule Inst we have that

Θ, P0 
 C τ0 is provable. We also have that Θ `sats
Q  S0, where Q = S [α 7→ β ]P0, and thus, by the

induction hypothesis, we have that (1) Θ 
 S′Q holds

for all S′ ∈ S0. Also, since Θ, P0 
 C τ0 is provable,

we have, by rule Subst, that (2) Θ, S0 P0 
 S0 C τ0,

where S0 = S′ S [α 7→ β ]. From (1) and (2) we have,

by rule Trans, that Θ 
 S0 C τ0 is provable. Since

S τ = S [α 7→ β ] τ0, this means that Θ 
 S′ S C τ is

provable. �

Theorem 2 (Completeness of `sats) If Θ 
 S P then

there exist S′ ∈ S and S′′ such that S′′ S′ P = S P ,

where Θ `sats P  S.

Proof: Induction over S P in Θ 
 S P . �

4.1 Termination

The algorithm presented in Figure 3 is modified in this

section in order to ensure termination on any given

input. The basic idea is to associate a value to each

constraint head of the set of constraint axioms that is

unified with some constraint in the recursive process

of computing satisfiability, and require that the value

associated to a constraint head always decreases in a

new unification that occurs during this process. Com-

putation stops if this requirement is not fulfilled, with

no satisfying substitution found for the original set of

constraints. Values in this decreasing chain are a mea-

sure of the size of types in constraints that unify with

each constraint head axiom: the size of each constraint

in this chain is decreasing or there exists a position of

a type argument in the constraint such that the type’s

size is decreasing.

Let the constraint value η(π) of a constraint π, which

gives the number of occurrences of type variables and

type constructors in π, be defined as follows:

η(C τ1 · · · τn) =
∑n
i=1 η(τi)

η(T ) = 1

η(α) = 1

η(τ1 τ2) = η(τ1) + η(τ2)

A finite constraint-head-value function Φ is used to

map constraint heads π0 of Θ to pairs (I,Π), as follows.

The first component I is a tuple (v0, ..., vn), where v0
is the least η(Sπ′) of all constraints π′ that have unified

with π0 during the satisfiability test for π, where S =

mgu(π′
0, π

′). Each vi, 1 ≤ i ≤ n, is the least η(τi) where

τi is a type belonging to some Sπ′ that has unified with

π0.

We let I.vi denote the i-th value of I and, similarly,

Φ(π0).I and Φ(π0).Π denote respectively the first and

second components of Φ(π0).

The second component Π of Φ(π0) contains con-

straints π′ that unify with π0 and have constraint val-

ues equal to v0. This allows distinct constraints with

equal constraint values to unify with π0 (cf. Example 6

below).

Consider a recursive step in a test of satisfiability

where a constraint π unifies with a constraint head

π0 = C τ1 ... τn, with S = mgu(π0, π). Let Φ(π0) =

((v0, ..., vn), Π) and η(Sπ) = n0. Φ(π0) is then updated

as follows. If n0 < v0 then only the value v0 is updated,

to n0. In the case that n0 = v0 and π 6∈ Π, Φ(π0) is

updated to ((v0, ..., vn), Π ∪ {Sπ}), i.e. we include Sπ

in the set of constraints that have the same value v0.

Finally, if n0 > v0, we set v0 to −1 and for each τi such

that η(τi) ≥ vi, we update vi with −1, otherwise vi is

updated with η(τi). In subsequent steps for constraints

π′ that unify with π0, with S′ as a unifying substitu-

tion, it is required that η(S′τi) < vi; if there’s no such

i, a failure in the termination criteria is detected.

Let f [x 7→ y] denote the usual function updating

notation for f ′ given by f ′(x′) = y if x′ = x, otherwise

f(x).

We define Φ[π0, π] as updating of Φ(π0) = (I,Π)

as follows, where I = (v0, v1, . . . , vn), π = C τ1 · · · τn,

n0 = η(π):

Φ[π0, π] = Φ[π0 7→ ((n0, v1, . . . , vn), Π)] if n0 < I.v0;

Φ[π0 7→ (I,Π ∪ {π})] if n0 = I.v0, π 6∈ Π;

Φ[π0 7→ (I ′, Π)] if n0 > I.v0,∃ i. (I ′.vi 6= −1)

where, for i = 1, . . . , n,

I ′.vi =

{
−1 if I.vi < η(τi) or i = 0

η(τi) otherwise

Fail otherwise

The computable function (tsat) for constraint sat-

isfiability, defined in Figure 4, uses judgements of the

form Θ,Φ `tsat P  S, with constraint-head-value

function Φ as additional parameter.

The set of satisfying substitutions for constraint set

P with respect to the set of constraint axioms Θ is

given by S, such that Θ,Φ0 `tsat P  S holds, where

Φ0(π0) = (I0, ∅) for each constraint head π0 = C τ1 ... τn
in Θ and I0 is a tuple formed by n+ 1 occurrences of a

large enough integer constant, represented by ∞.

Consider the following.

Example 3 Consider computing satisfiability of π =

Eq[[I]] in Θ = {Eq I, ∀a.Eq a ⇒ Eq[a]}, letting

π0 = Eq[a]; we have:
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Θ,Φ `tsat P  S

Θ,Fail `tsat ∅ ∅
SFail1

Θ,Φ `tsat ∅ {id}
SEmpty1

Θ,Φ `tsat π  S0
S = {S′S | S ∈ S0, S′ ∈ S1, Θ, Φ `tsat SP  S1}

Θ,Φ `tsat π, P  S
SConj1

∆ = sats(π,Θ)

S = {S′S | (S,Q, π′) ∈ ∆, S′ ∈ S0, Φ′ = Φ[π′, Sπ],
Θ, Φ′ `tsat Q S0}

Θ,Φ `tsat π  S
SInst1

Fig. 4 Terminating Constraint Set Satisfiability

∆0 = sats(π,Θ) = {
(
S|∅, {Eq[I]}, π0

)
}

S = [a1 7→ [I]]

S0 = {S1 ◦ id | S1 ∈ S1, Θ, Φ1 `tsat Eq[I] S1}
Θ,Φ0 `tsat π  S0

where Φ1 = Φ0[π0, π], Φ1(π0).I = (η(π) = 3,∞), Sπ =

π and a1 is a fresh type variable; then:

∆1 = sats(Eq[I], Θ) = {
(
S′|∅, {Eq I}, π0

)
}

S′ = [a2 7→ I]

S1 = {S2 ◦ id | S2 ∈ S2, Θ, Φ2 `tsat Eq I S2}
Θ,Φ1 `tsat Eq[I] S1

where Φ2 = Φ1[π0,Eq[I]] and η(Eq[I]) = 2 is less

than Φ1(π0).I.v0 = 3; then:

∆2 = sats(Eq I, Θ) = {
(
id , ∅,Eq I

)
}

S2 = {S3 ◦ id | S3 ∈ S3, Θ, Φ3 `tsat ∅ S3 = {id}}
Θ,Φ2 `tsat Eq I S2

where Φ3 = Φ2[Eq I,Eq I], S3 = {id} by (SEmpty1).

Example 4 Consider again Example 2: we want to ob-

tain the set of satisfying substitutions for constraint

π = C a (T a), given Θ = {∀a, b. C a b ⇒ C (T 2 a) b}
(computation with input π by the function in Figure 3

does not terminate). We have, where π0 = C (T 2 a) b:

∆0 = sats(π,Θ) = {
(
S |{a}, {π1}, π0

)
}

S = [a 7→ T 2 a1, b1 7→ T 3 a1]

π1 = C a1 (T 3 a1)

S0 = {S1 ◦ [a 7→ T 2 a1] | S1 ∈ S1, Θ, Φ1 `tsat π1  S1}
Θ,Φ0 `tsat π  S0

where Φ1 = Φ0[π0, Sπ], η(Sπ) = η(C (T 2 a1) (T 3 a1)) =

7 < Φ0(π0).I.v0 =∞; then:

∆1 = sats(π1, Θ) = {
(
S′ |{a1}, {π2}, π0

)
}

S′ = [a1 7→ T 2 a2, b2 7→ T 3 a1 = T 5a2]

π2 = C a2 (T 5 a2)

S1 = {S2 ◦ [a1 7→ T 2 a2] | S2 ∈ S2, Θ, Φ2 `tsat π2  S2}
Θ,Φ1 `tsat π1  S1

where Φ2 = Φ1[π0, S
′π1], S′π1 = (C (T 2 a2) (T 5 a2)

and, since η(S′π1) = 9 > Φ1(π0).I.v0 = 7, we have that

Φ2(π0).I = (−1, η(T 2 a2) = 3, η(T 5 a2) = 6); then:

∆1 = sats(π2, Θ) = {
(
S′ |{a2}, {π3}, π0

)
}

S′′ = [a2 7→ T 2 a3, b3 7→ T 5 a2 = T 7a3]

π3 = C a3 (T 7 a3)

S2 = {S3 ◦ [a2 7→ T 2 a3] | S3 ∈ S3, Θ, Φ3 `tsat π3  S3}
Θ,Φ1 `tsat π1  S2

where Φ3 = Φ2[π0, S
′′π2] = Fail , because η(S′′π2) =

η(C (T 3 a3)(T 7 a3)) = 12 > Φ2(π0).I.v0 = 9 and there’s

no i such that Φ3(π0).I.vi 6= −1, meaning that no pa-

rameter of S′′π2 has a decreasing η value.

The following illustrates an example of a satisfi-

able constraint for which computation of satisfiability

involves computing satisfiability of constraints π′ that

unify with a constraint head π0 such that η(π′) is greater

than the upper bound associated to π0.

Example 5 Consider satisfiability of π = C I (T 3 I) in

Θ = {C (T a) I,∀a, b. C (T 2 a) b⇒ C a (T b)}. We have,

where π0 = C a (T b):

∆0 = sats(π,Θ) = {
(
S |∅, {π1}, π0

)
}

S = [a1 7→ I, b1 7→ T 2 I]

π1 = C (T 2 I) (T 2 I)

S0 = {S1 ◦ id | S1 ∈ S1, Θ, Φ1 `tsat π1  S1}
Θ,Φ0 `tsat π  S0

where Φ1 = Φ0[π0, π], η(π) = 5 < Φ0(π0).I.v0 = ∞,

Sπ = π; then:

∆1 = sats(π1, Θ) = {
(
S′ |∅, {π2}, π0

)
}

S′ = [a2 7→ T 2 I, b2 7→ T I]

π2 = C (T 4 I) (T I)

S1 = {S2 ◦ [a1 7→ T 2 a2] | S2 ∈ S2, Θ, Φ2 `tsat π2  S2}
Θ,Φ1 `tsat π1  S1

where Φ2 = Φ1[π0, π1], Φ1(π0).I = (5,∞,∞), S′π1 =

π1. Since η(π1) = 6 > 5 = Φ1(π0).I.v0, we have that

Φ2(π0).I becomes equal to (−1, 3, 3).

Then, consider that π2 = C τ1 τ2 where τ1 = T 4 I

and τ2 = T I. Since η(π2) > Φ2(π0).I.v0 = −1, there

must exist i, 1 ≤ i ≤ 2, such that η(τi) < Φ2(π0).vi, and
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such condition is satisfied for i = 2, updating Φ2(π0).I

to (−1,−1, 2). Satisfiability is then finally tested for

π3 = C (T 6 I)I, that unifies with π0 = C (T a) I, which

returns S3 = {[a3 7→ T 5 I]|∅} = {id}. Constraint π is

thus satisfiable, with S0 = {id}.

The following example illustrates the use of a set of

constraints as a component of the constraint-head-value

function.

Example 6 Let π = C (T 2 I) F, π0 = C (T a) b, Θ =

{C I (T 2 F),∀a, b. C a (T b)⇒ C (T a) b}:

∆0 = sats(π,Θ) = {
(
S |∅, {π1}, π0

)
}

S = [a1 7→ (T I), b1 7→ F], π1 = C (T I) (T F)

S0 = {S1 ◦ id | S1 ∈ S1, Θ, Φ1 `tsat π1  S1}
Θ,Φ0 `tsat π  S0

where Φ1 = Φ0[π0, π], Sπ = π; then:

∆1 = sats(π1, Θ) = {
(
S′ |∅, {π2}, π0

)
}

S′ = [a2 7→ I, b2 7→ T F], π2 = C I (T 2 F)

S1 = {S2 ◦ id | S2 ∈ S2, Θ, Φ2 `tsat π2  S2}
Θ,Φ1 `tsat π1  S1

where Φ2 = Φ1[π0, π1], η(π1) = 4 = Φ1(π0).I.v0 =

η(π), S′π1 = π1 and π1 is not in Φ1(π0).Π1 = ∅. We

have that S2 = {id}, because sats(C I (T 2 F), Θ) =

{(id , ∅, C I (T 2 F))}, and π is then satisfiable.

Since satisfiability of type class constraints is in gen-

eral undecidable [6], there exist instances of this prob-

lem for which our algorithm incorrectly reports unsat-

isfiability. An example that exhibits an incorrect be-

havior, constructed by encoding a solvable Post Corre-

spondence Problem (PCP) instance by means of con-

straint set satisfiability, using G. Smith’s scheme [6],

is shown below. For all examples mentioned in the lit-

erature [15,17] and numerous tests that include those

used by GHC involving pertinent GHC extensions, the

algorithm works as expected, without the need of any

compilation flag.

Example 7 This example uses a PCP instance taken

from [9]. A PCP instance can be defined as composed

of pairs of strings, each pair having a top and a bottom

string, where the goal is to select a sequence of pairs

such that the two strings obtained by concatenating

top and bottom strings in such pairs are identical. The

example uses three pairs of strings: p1 = (100, 1) (that

is, pair 1 has string 100 as the top string and 1 as the

bottom string), p2 = (0, 100) and p3 = (1, 00).

This instance has a solution: using numbers to rep-

resent corresponding pairs (i.e. 1 represents pair 1 and

analogously for 2 and 3), the sequence of pairs 1311322

is a solution.

A satisfiability problem that has a solution if and

only if the PCP instance has a solution can be con-

structed by adapting G. Smith’s scheme to Haskell’s

notation. We consider for this a two-parameter class C,

and a constraint context such that Θ = Θ1 ∪ Θ2 ∪ Θ3,

where Θi is constructed from pair i, for i = 1, 2, 3:

Θ1 = {C (1→ 0→ 0) 1,

∀a, b. C a b⇒ C (1→ 0→ 0→ a) (1→ b) }
Θ2 = {C 0 (1→ 0→ 0),

∀a, b. C a b⇒ C (0→ a) (1→ 0→ 0→ b) }
Θ3 = {C 1 (0→ 0),

∀a, b. C a b⇒ C (1→ a) (0→ 0→ b) }

We have that constraint C a a is satisfiable, with a so-

lution constructed from solution 1311322 of the PCP

instance. Computation by our algorithm terminates, er-

roneously reporting unsatisfiability. The steps of the

computation are omitted. The error occurs because a

constraint π2 = C a2 (1 → a2) unifies with π01 =

C (1 → 0 → 0 → a) (1 → b) and η(Sπ2) is greater

than Φ(π01).I.v0, where S = mgu(π2, π01), and there’s

no i ∈ {1, 2} such that Φ3(π0).I.vi 6= −1, meaning that

no parameter of Sπ2 has a decreasing η value.

To prove that the computation of the set of sat-

isfying substitutions for any given constraint set P by

the function defined in Figure 4 always terminates, con-

sider that an infinite recursion might only occur if an

infinite number of constraints unified with the head π0
of one constraint axiom in Θ, since there exist finitely

many constraint axioms in Θ. This is avoided because,

for any new constraint π that unifies with π0, we have,

by the definition of Φ[π0, π], that Φ(π0) is updated to a

value distinct from the previous ones (otherwise Φ[π0, π]

yields Fail and computation is stopped). The conclusion

follows from the fact that Φ(π0) can have only finitely

many distinct values, for any π0. This can be seen by

considering that, for any π0 such that Φ(π0) = (I,Π),

the insertion of a new constraint in Π decreases k− k′,
where k is the finite number of all possible values that

can be inserted in Π and k′ is the cardinality of Π. Such

a decrease causes then a decrease of Φ (since there exists

only finitely many constraint heads π0 in Θ). Similarly,

at each step there must exist some i such that I.vi de-

creases, and this can happen only a finitely number of

times. We conclude that computation on any given in-

put terminates.

The proposed termination criteria is related to the

Paterson Condition used in the GHC compiler (see Sec-

tion 2). The constraint value is based on item 2 of this

condition, but, instead of using it as a syntactic re-

striction over constraint heads and contexts in instance

declarations, we use it in the definition of a finitely de-

creasing chain over recursively dependent constraints.
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In comparison to the use of a recursion depth limit,

our approach has the advantage that type-correctness

is not implementation dependent (a constraint is or is

not satisfiable with respect to a given set of constraint

axioms). The use of a recursion depth limit can make

a constraint set satisfiable in one implementation and

unsatisfiable in another that uses a lower limit. Incor-

rectly reporting unsatisfiability can occur in both cases,

but is expected to be extremely rare with our approach.

We are not aware of any practical example where this

occurs.

The main disadvantages of our approach are that

it is not syntactically possible to characterize such in-

correct unsatisfiability cases and it is not very easy for

programmers to understand how type class constraints

are handled in such a case, if and when it occurs. How-

ever, we expect these cases not to occur in practice.

The presented algorithm has been verified to be-

have correctly, without the need of any compilation

flag, on all examples found in the literature [15], all

GHC test cases, involving flags FlexibleInstances,

FlexibleContexts and UndecidableInstances, and

on Haskell libraries that use multi-parameter type classes,

including the monad transformer library [1].

5 Constraint Set Simplification

The process of simplification of a constraint set, also

called context reduction, consists of reducing each con-

straint π in this set to the context obtained by recur-

sively reducing the context P of the matching instance

for π in Θ, if such matching exists, until P = ∅ or there

exists no instance in Θ that matches with π. In the

latter case π reduces to itself.

This recursive process may not terminate: as a sim-

ple example, consider reduction of constraint C a when

Θ = {∀a.C a⇒ C a}.
This section presents a computable function for con-

straint set simplification, where computation is guaran-

teed to terminate by using the same criterion used in

Section 4.1.

Constraint set simplification is essentially based on

instance matching. We use function matches(π,Θ), de-

fined below, in order to capture the relevant information

of matching constraint axioms in Θ with a given con-

straint π. Function matches is defined by using func-

tion sats (Section 4), through skolemization of type

variables that occur in the given constraint argument

(Skolem variables are non unifiable variables, that is,

constants):

Θ `simp P  Q

Θ,Φ `simp ∅ ∅
REmpty

Θ,Φ `simp π  P

Θ,Φ `simp Q Q′

Θ,Φ `simp π,Q  P,Q′
RConj1

Θ,Φ `simp π  fail

Θ,Φ `simp π,Q  fail
RConj2

matches(π,Θ) = ∅
Θ,Φ `simp π  π

RStop

Θ,Fail `simp π  fail
RFail

{(P, π′)} = matches(π,Θ)

Θ,Φ[π′, π] `simp P  Q

Θ `simp π  Q
RInst1

{(P, π′)} = matches(π,Θ)

Θ,Φ[π′, π] `simp P  fail

Θ `simp π  fail
RInst2

Fig. 5 Constraint Set Simplification

matches(π,Θ) =
{

(S P, π′) | ∆ = sats
(
[α 7→ K]π,Θ

)
,

(S, S P, π′) ∈ ∆, α = tv(π),

K are fresh Skolem variables
}

Function matches(π,Θ) returns either a singleton or an

empty set2.

Constraint set simplification uses a function defined

in Figure 5 by means of judgements of the formΘ,Φ `simp
P  Q. This means that reduction of constraint set P

under constraint axioms Θ either give constraint set Q

as a result or fails. Failure is caused by the criterion

used for ensuring termination, explained in Section 4.1.

Using this function, context reduction is defined as fol-

lows, where Φ0 is as defined in Section 4.1:

for i = 1, . . . , n, Qi =

{
πi if Θ,Φ0 `simp πi  fail

Q′
i if Θ,Φ0 `simp πi  Q′

i

Θ `simp0 {π1, . . . πn} Q1, . . . , Qn
R0

The rules of Figure 5 are analogous to the ones in

Figure 4, but now termination enforced by the termi-

nation criterion is reported as a failure, which must

be propagated backwards along the recursive calls of

2 We do not consider overlapping instances [20], since the
subject is unrelated to termination of constraint set satisfi-
ability and simplification. Supporting overlapping instances
would need a modification of function matches so as to select
a single instance if there exist overlapping matching instances.
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the computation. Thus, reduction of a constraint π is

now defined by two rules, (RInst1) and (RInst2) and,

analogously, two different rules are used for specifying

reduction of a non-singleton set of constraints.

Rule (REmpty) specifies that an empty set of con-

straints reduces to itself. Rule (RStop) specifies that a

constraint π cannot be reduced if there is no instance

in Θ that matches with π. Rule (RFail) enforces termi-

nation, expressing that reduction cannot be performed

since updating of Φ fails.

The process of constraint set simplification is illus-

trated by the following example.

Example 8 Let Θ = {∀a.C (T a) ⇒ C a, D I} and

P = {D I, C a}. According to rule (R0), reduction of

P amounts to independently reducing constraints D I

and C a.

Reduction of D I is defined by rule (RInst1):

{(∅, D I)} = matches(D I, Θ)

Θ,Φ0[D I, DI] `simp ∅ ∅
Θ,Φ0 `simp D I ∅

Reduction of π = π0 = C a results in failure, as shown

below:

{(C (T a1), π0)} = matches(π,Θ)

Θ,Φ1 `simp (C (T a1)) fail

Θ,Φ0 `simp π  fail

where Φ1 = Φ0[π, π0], Φ1(π0).I = (η(π) = 1,∞). We

have that:

{(C (T 2 a2), π0)} = matches(C (T a1), Θ)

Θ,Φ2 `simp (C (T 2 a2)) fail

Θ,Φ1 `simp (C (T a1)) fail

where Φ2 = Φ1[C (T a1), π0] = fail because η(C (T a1)) 6<
Φ1(π0).I.v1 = 1.

By rule (R0), we have that Θ `simp0 {D I, C a}  
{C a}, meaning that D I can be removed and C a can-

not be further reduced.

The following theorem states the correctness of the

constraint simplification function defined in Figure 5.

Theorem 3 (Correctness of `simp) If Θ, Φ `simp P  
Q holds, then Θ,Q 
 P is provable and Q cannot be

further simplified, i.e. Θ, Φ `simp Q Q.

Proof: Induction over Θ, Φ `simp P  Q. �

6 Conclusion

This paper presents a termination criterion and termi-

nating algorithms for constraint simplification and im-

provement, based on the use of a value that always de-

creases on each recursive step in these algorithms. The

termination criterion defined can be used in any form

of constraint simplification and improvement algorithm

during type inference.

The use of this criterion eliminates the need for im-

posing syntactic conditions on Haskell type class and

instance declarations and the need for using a recursion

stack depth limit in order to guarantee termination of

type inference in the presence of multi-parameter type

classes, in case these syntactic conditions are chosen by

programmers not to be enforced.

Since type class constraint satisfiability is in gen-

eral undecidable, there exist instances of this problem

for which the algorithm presented in this paper incor-

rectly reports unsatisfiability. However, practical exam-

ples where this occurs are expected to be very rare. The

algorithms have been implemented and used in a pro-

totype front-end for Haskell, available at

http://github.com/rodrigogribeiro/mptc

For all examples mentioned in the literature, Haskell li-

braries that use multi-parameter type classes and tests

used by the Haskell GHC compiler, involving all perti-

nent GHC extensions, the algorithm works as expected

without the need for any compilation flag.

In comparison to the use of a recursion depth limit,

our approach has the advantage that type-correctness

is not implementation dependent (a constraint is or is

not satisfiable with respect to a given set of constraint

axioms). The use of a recursion depth limit can make

a constraint set satisfiable in one implementation and

unsatisfiable in another that uses a lower limit. Incor-

rectly reporting unsatisfiability can occur in both cases,

but is expected to be extremely rare with our approach.

We are not aware of any practical example where this

occurs.

The main disadvantages of our approach are that

it is not syntactically possible to characterize such in-

correct unsatisfiability cases and it is not very easy for

programmers to understand how type class constraints

are handled in such a case, if and when it occurs.
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