A Mechanized Textbook Proof of a Type Unification Algorithm

Rodrigo Ribeiro ¹ Carlos Camarão ²

¹Departamento de Computação e Sistemas - UFOP

²Departamento de Ciência da Computação - UFMG

XVIII Brazilian Symposium on Formal Methods, 2015

Introduction

- Type inference is an important mechanism of modern functional languages, like Haskell and MI
- Type inference algorithms divided in
 - Constraint generation
 - Constraint solving
- Constraint solving for parametric polymorphism:
 First order unification

Introduction

- Soundness: Computed substitution is a unifier.
- Completeness: Every unifier can be obtained as $S \circ S_c$, for some S, where S_c is the computed substitution.
- Simple algorithms contained in textbooks, e.g:
 - Types and Programming Languages, Benjamin Pierce, The MIT Press, 2002.
 - Foundations for Programming Languages, John Mitchell, The MIT Press, 1996.

Motivation

- Build a sound, complete and "axiom-free" formalization of unification, following textbooks presentations.
- First step toward a complete formalization of type inference algorithm for Haskell.

- Formalization developed using Coq version 8.4.
- Why Coq?
 - Mature tool used in several large scale formalizations: e.g. C compiler, Java Card plataform and mathematical theorems.
- Code avaliable at:

```
https://github.com/rodrigogribeiro/
unification
```

- Proof checking consists of type checking
- Provides tactics to ease proof construction.
- lacktriangle Has built-in DSL for building tactics: \mathcal{L} tac

■ Sample theorem — tactic based version

```
Variables A B C : Prop.  
Theorem example : (A \to B) \to (B \to C) \to A \to C.  
Proof.  
intros H H' HA.  
apply H'.  
apply H.  
assumption.  
Qed.
```

■ Sample theorem — term based version

```
Definition example': (A \rightarrow B) \rightarrow (B \rightarrow C) \rightarrow A \rightarrow C := fun (H: A \rightarrow B) (H': B \rightarrow C) (HA: A) \Rightarrow H' (H: HA).
```

 We'll use a more familiar notation (not Coq) for definitions of types and functions

• We consider that terms are types, formed by type variables (α) , type constructors (c) and arrows \rightarrow

$$\tau ::= \alpha \mid c \mid \tau \to \tau$$

- Kinding information needed to model Haskell types, but:
 - The use of kinds is orthogonal to unification
 - Kinds are omitted for clarity
 - Handling kinds is straightforward

- $FV(\tau)$: free type variables from τ
- \bullet $\tau_1 \stackrel{e}{=} \tau_2$: equality constraint
- Meta-variable C denotes a list of (equality) constraints
- Size of a type.

$$size(\tau_1 \rightarrow \tau_2) = 1 + size(\tau_1) + size(\tau_2)$$

 $size(\tau) = 1$

Lemma: For all types $\tau_1, \tau_1', \tau_2, \tau_2'$ and all lists of constraints \mathbb{C} we have that:

$$\textit{size}((\tau_1 \stackrel{e}{=} \tau_1') :: (\tau_2 \stackrel{e}{=} \tau_2') :: \mathbb{C}) < \textit{size}((\tau_1 \rightarrow \tau_2 \stackrel{e}{=} \tau_1' \rightarrow \tau_2') :: \mathbb{C})$$

Proof: Induction over \mathbb{C} using the definition of *size*.

Lemma: For all types τ, τ' and all lists of constraints $\mathbb C$ we have that

$$\mathit{size}(\mathbb{C}) < \mathit{size}((\tau \stackrel{e}{=} \tau') :: \mathbb{C})$$

Proof: Induction over τ and case analysis over τ' , using the definition of *size*.

Substitutions

- Finite functions from type variables to types.
- Metavariable S denotes substitutions and id denotes the identity substitution.
- Represented as finite mappings:

$$[\alpha_1 \mapsto \tau_1, ..., \alpha_n \mapsto \tau_n]$$

Applying a Mapping

$$[\alpha \mapsto \tau'] \tau_1 \to \tau_2 = \tau'_1 \to \tau'_2$$

$$\text{where: } \begin{cases} \tau'_1 = [\alpha \mapsto \tau'] \tau_1 \\ \tau'_2 = [\alpha \mapsto \tau'] \tau_2 \end{cases}$$

$$[\alpha \mapsto \tau'] \alpha = \tau'$$

$$[\alpha \mapsto \tau'] \tau = \tau$$

Substitution Application

 Defined in a variable-by-variable way by recursion on the applied substitution.

$$S(\tau) = \begin{cases} \tau & \text{if } S = []\\ S'([\alpha \mapsto \tau'] \tau) & \text{if } S = [\alpha \mapsto \tau'] :: S' \end{cases}$$

Extensionality Lemma

- Used to state completeness of unification.
- Not necessary if we allow ourselves to postulate function extensionality.

Lemma: For all substitutions S and S', if $S(\alpha) = S'(\alpha)$ for all variables α , then $S(\tau) = S'(\tau)$ for all types τ .

Proof: Induction over τ , using the definition of substitution application.

- Conditions imposed on types, constraints and substitutions to give simple proofs of termination, soundness and completeness.
- During the execution of unify the variable context (a set of variables) is used to hold the complement of the unifier domain.

- Type τ is well-formed in a variable context V, written as $wf(V,\tau)$, if all type variables that occur in τ are in V.
- A constraint $\tau_1 \stackrel{e}{=} \tau_2$ is well-formed, written as $wf(\mathcal{V}, \tau_1 \stackrel{e}{=} \tau_2)$, if both τ_1 and τ_2 are well-formed in \mathcal{V} .

■ A list of constraints \mathbb{C} is well-formed in \mathcal{V} , written as $wf(\mathcal{V}, \mathbb{C})$, if all of its equality constraints are well-formed in \mathcal{V} .

- A substitution $S = \{ [\alpha \mapsto \tau] \}$:: S' is well-formed in V, written as wf(V, S), if the following conditions apply:
 - $\alpha \in \mathcal{V}$
 - $wf(\mathcal{V} \{\alpha\}, \tau)$
 - $wf(\mathcal{V} \{\alpha\}, S')$

Substitution Composition

- Let S_1 be a substitution such that $wf(\mathcal{V}, S_1)$;
- Let S_2 a substitution such that $wf(V dom(S_1), S_2)$.
- We can define composition as:

$$S_2 \circ S_1 = S_1 ++ S_2$$

Substitution Composition

Theorem: For all types τ and all substitutions S_1 , S_2 such that $wf(\mathcal{V}, S_1)$ and $wf(\mathcal{V} - dom(S_1), S_2)$ we have that $(S_2 \circ S_1)(\tau) = S_2(S_1(\tau))$.

Proof: By induction over the structure of S_2 .

Occurs Check

- Avoids the generation of cyclic mappings like $[\alpha \mapsto \alpha \to \alpha]$.
- $occurs(\alpha, \tau)$ is inhabited iff $\alpha \in FV(\tau)$:

```
occurs(\alpha, \tau_1 \to \tau_2) = occurs(\alpha, \tau_1) \lor occurs(\alpha, \tau_2)

occurs(\alpha, \alpha) = True

occurs(\alpha, \tau) = False otherwise
```

Occurs Check

- Occurs check is crucial to prove termination of unification.
- Next lemma is important to establish a relation between application of substitution and the occurs check.

Lemma: Let τ be s.t. $wf(\mathcal{V}, \tau)$ and $\neg occurs(\alpha, \tau)$. Then $wf(\mathcal{V} - \{\alpha\}, \tau)$.

Proof: Induction over the structure of τ .

Unification Algorithm

- (1) unify([]) = id
- (2) $unify((\alpha \stackrel{e}{=} \alpha) :: \mathbb{C}) = unify(\mathbb{C})$
- (3) $unify((\alpha \stackrel{e}{=} \tau) :: \mathbb{C}) = if occurs(\alpha, \tau) then fail else <math display="block">unify([\alpha \mapsto \tau]\mathbb{C}) \circ [\alpha \mapsto \tau]$
- (4) $unify((\tau \stackrel{e}{=} \alpha) :: \mathbb{C}) = if \ occurs(\alpha, \tau) \ then \ fail \ else$ $<math>unify([\alpha \mapsto \tau]\mathbb{C}) \circ [\alpha \mapsto \tau]$
- (5) $unify((\tau_1 \to \tau_2 \stackrel{e}{=} \tau \to \tau') :: \mathbb{C}) = unify((\tau_1 \stackrel{e}{=} \tau) :: (\tau_2 \stackrel{e}{=} \tau') :: \mathbb{C})$
- (6) $unify((\tau \stackrel{e}{=} \tau') :: \mathbb{C}) = if \ \tau \equiv \tau' \ then \ unify(\mathbb{C}) \ else \ fail$

Coq's termination checker rejects calls in red.

Termination

- Termination argument based on the notion of degree(n, m) of \mathbb{C} .
 - n: number of type variables in \mathbb{C}
 - $lue{m}$: total size of types in \mathbb{C} .
- Termination argument based on lexicographic ordering of pairs.

Termination

■ The next lemma is used to convince Coq that the following call decreases input \mathbb{C} :

$$unify([\alpha \mapsto \tau]\mathbb{C})$$

Lemma: For all $\alpha \in \mathcal{V}$, all well-formed types τ and well-formed lists of constraints \mathbb{C} , it holds that

$$degree([\alpha \mapsto \tau] \mathbb{C}) \prec degree((\alpha \stackrel{e}{=} \tau) :: \mathbb{C})$$

Termination

■ The next lemma is used to convince Coq that the following call decreases input \mathbb{C} :

$$unify((\tau_1 \stackrel{e}{=} \tau) :: (\tau_2 \stackrel{e}{=} \tau') :: \mathbb{C})$$

Lemma:For all well-formed $\tau_1, \tau_2, \tau_1', \tau_2'$ and all well-formed \mathbb{C} ,

$$\textit{degree}((\tau_1 \stackrel{e}{=} \tau_1', \tau_2 \stackrel{e}{=} \tau_2') :: \mathbb{C}) \prec \textit{degree}((\tau_1 \rightarrow \tau_2 \stackrel{e}{=} \tau_1' \rightarrow \tau_2') :: \mathbb{C})$$

- Unification either fails or returns a substitution that is the *least unifier* for a constraint \mathbb{C} .
- A substitution S is a unifier iff $unifier(\mathbb{C}, S)$ is provable

$$unifier([], S) = True$$

 $unifier((\tau \stackrel{e}{=} \tau') :: \mathbb{C}', S) = S(\tau) = S(\tau') \land unifier(\mathbb{C}', S)$

Substitution ordering

$$S \leq S' \stackrel{def}{=} \exists S_1. \forall \alpha. S'(\alpha) = S_1 \circ S(\alpha)$$

Least unifier definition

$$least(S, \mathbb{C}) = \forall S'. unifier(\mathbb{C}, S') \rightarrow S \leq S'$$

■ Type of unification algorithm:

$$(unifier(\mathbb{C}, S) \land least(S, \mathbb{C})) \lor UnifyFailure(\mathbb{C})$$

• $UnifyFailure(\mathbb{C})$: type that explain the reason of failure of unification of \mathbb{C} .

- Proofs of soundness and completenes tied with algorithm definition.
 - "Holes" mark positions where proof terms are expected.
 - Proof obligations generated by holes filled by custom Ltac scripts

Automating Proofs

- Proof automation is crucial to scale Coq formalizations.
- Lac scripts fill all proof obligations for termination, soundness and completeness.
- Main tools used for automating proofs:
 - Custom \mathcal{L} tac scripts for proof state simplification.
 - Use of auto tactic with hint databases.

Conclusion

- Complete formalization of unification in Coq.
- Development statistics:
 - 31 lemmas and theorems
 - 34 type and function definitions
 - Total: 610 lines (94 lines of comments)
- Implemention effort on termination: 293 lines (21 theorems).