
A Mechanized Textbook Proof of a
Type Unification Algorithm

Rodrigo Ribeiro 1 Carlos Camarão 2

1Departamento de Computação e Sistemas - UFOP

2Departamento de Ciência da Computação - UFMG

XVIII Brazilian Symposium on Formal Methods,
2015

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Introduction

Type inference is an important mechanism of
modern functional languages, like Haskell and
ML
Type inference algorithms divided in

Constraint generation
Constraint solving

Constraint solving for parametric polymorphism:
First order unification

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Introduction

Soundness: Computed substiution is a unifier.
Completeness: Every unifier can be obtained as
S ◦ Sc , for some S , where Sc is the computed
substitution.
Simple algorithms contained in textbooks, e.g:

Types and Programming Languages, Benjamin
Pierce, The MIT Press, 2002.
Foundations for Programming Languages, John
Mitchell, The MIT Press, 1996.

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Motivation

Build a sound, complete and “axiom-free”
formalization of unification, following textbooks
presentations.
First step toward a complete formalization of
type inference algorithm for Haskell.

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Coq Proof Assistant

Formalization developed using Coq version 8.4.
Why Coq?

Mature tool used in several large scale
formalizations: e.g. C compiler, Java Card
plataform and mathematical theorems.

Code avaliable at:
https://github.com/rodrigogribeiro/

unification

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm

https://github.com/rodrigogribeiro/unification
https://github.com/rodrigogribeiro/unification


Coq Proof Assistant

Proof checking consists of type checking
Provides tactics to ease proof construction.
Has built-in DSL for building tactics: Ltac

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Coq Proof Assistant

Sample theorem — tactic based version
Variables A B C : Prop.

Theorem example : (A → B) → (B → C) → A → C.
Proof.

intros H H’ HA.
apply H’.
apply H.
assumption.

Qed.

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Coq Proof Assistant

Sample theorem — term based version

Definition example’ : (A → B) → (B → C) → A → C :=
fun (H : A → B) (H’ : B → C) (HA : A) ⇒ H’ (H HA).

We’ll use a more familiar notation (not Coq) for
definitions of types and functions

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Definitions

We consider that terms are types, formed by
type variables (α), type constructors (c) and
arrows →

τ ::= α | c | τ → τ

Kinding information needed to model Haskell
types, but:

The use of kinds is orthogonal to unification
Kinds are omitted for clarity
Handling kinds is straightforward

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Definitions

FV (τ): free type variables from τ

τ1
e
= τ2: equality constraint

Meta-variable C denotes a list of (equality)
constraints
Size of a type.

size(τ1 → τ2) = 1+ size(τ1) + size(τ2)
size(τ) = 1

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Definitions

Lemma: For all types τ1, τ ′1, τ2, τ
′
2 and all lists of

constraints C we have that:

size((τ1
e
= τ ′1) :: (τ2

e
= τ ′2) :: C) < size((τ1 → τ2

e
= τ ′1 → τ ′2) :: C)

Proof: Induction over C using the definition of size.

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Definitions

Lemma: For all types τ, τ ′ and all lists of
constraints C we have that

size(C) < size((τ e
= τ ′) :: C)

Proof: Induction over τ and case analysis over τ ′,
using the definition of size.

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Substitutions

Finite functions from type variables to types.
Metavariable S denotes substitutions and id
denotes the identity substitution.
Represented as finite mappings:
[α1 7→ τ1, ..., αn 7→ τn]

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Applying a Mapping

[α 7→ τ ′] τ1 → τ2 = τ ′1 → τ ′2

where:
{
τ ′1 = [α 7→ τ ′]τ1
τ ′2 = [α 7→ τ ′]τ2

[α 7→ τ ′]α = τ ′

[α 7→ τ ′] τ = τ

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Substitution Application

Defined in a variable-by-variable way by
recursion on the applied substitution.

S(τ) =
{
τ if S = [ ]
S ′([α 7→ τ ′] τ) if S = [α 7→ τ ′] :: S ′

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Extensionality Lemma

Used to state completeness of unification.
Not necessary if we allow ourselves to postulate
function extensionality.

Lemma: For all substitutions S and S ′, if
S(α) = S ′(α) for all variables α, then S(τ) = S ′(τ)
for all types τ .
Proof: Induction over τ , using the definition of
substitution application.

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Well-Formedness Conditions

Conditions imposed on types, constraints and
substitutions to give simple proofs of
termination, soundness and completeness.
During the execution of unify the variable
context (a set of variables) is used to hold the
complement of the unifier domain.

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Well-Formedness Conditions

Type τ is well-formed in a variable context V ,
written as wf (V , τ), if all type variables that
occur in τ are in V .
A constraint τ1

e
= τ2 is well-formed, written as

wf (V , τ1
e
= τ2), if both τ1 and τ2 are

well-formed in V .

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Well-Formedness Conditions

A list of constraints C is well-formed in V ,
written as wf (V ,C), if all of its equality
constraints are well-formed in V .

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Well-Formedness Conditions

A substitution S = {[α 7→ τ ]} :: S ′ is
well-formed in V , written as wf (V , S), if the
following conditions apply:

α ∈ V
wf (V − {α}, τ)
wf (V − {α}, S ′)

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Substitution Composition

Let S1 be a substitution such that wf (V , S1);
Let S2 a substitution such that
wf (V − dom(S1), S2).
We can define composition as:

S2 ◦ S1 = S1 ++ S2

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Substitution Composition

Theorem: For all types τ and all substitutions S1,
S2 such that wf (V , S1) and wf (V − dom(S1), S2) we
have that (S2 ◦ S1) (τ) = S2(S1(τ)).
Proof: By induction over the structure of S2.

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Occurs Check

Avoids the generation of cyclic mappings like
[α 7→ α→ α].
occurs(α, τ) is inhabited iff α ∈ FV(τ):

occurs(α, τ1 → τ2) = occurs(α, τ1) ∨ occurs(α, τ2)
occurs(α, α) = True
occurs(α, τ) = False otherwise

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Occurs Check

Occurs check is crucial to prove termination of
unification.
Next lemma is important to establish a relation
between application of substitution and the
occurs check.

Lemma: Let τ be s.t. wf (V , τ) and ¬occurs(α, τ).
Then wf (V − {α}, τ).
Proof: Induction over the structure of τ .

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Unification Algorithm

(1) unify([ ]) = id
(2) unify((α e

= α) :: C) = unify(C)
(3) unify((α e

= τ) :: C) = if occurs(α, τ) then fail else
unify([α 7→ τ ]C) ◦ [α 7→ τ ]

(4) unify((τ e
= α) :: C) = if occurs(α, τ) then fail else

unify([α 7→ τ ]C) ◦ [α 7→ τ ]

(5) unify((τ1 → τ2
e
= τ → τ ′) :: C) =

unify((τ1
e
= τ) :: (τ2

e
= τ ′) :: C)

(6) unify((τ e
= τ ′) :: C) = if τ ≡ τ ′ then unify(C) else fail

Coq’s termination checker rejects calls in red.

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Termination

Termination argument based on the notion of
degree (n,m) of C.

n: number of type variables in C
m: total size of types in C.

Termination argument based on lexicographic
ordering of pairs.

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Termination

The next lemma is used to convince Coq that
the following call decreases input C:

unify([α 7→ τ ]C)

Lemma: For all α ∈ V , all well-formed types τ and
well-formed lists of constraints C, it holds that

degree([α 7→ τ ]C) ≺ degree((α e
= τ) :: C)

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Termination

The next lemma is used to convince Coq that
the following call decreases input C:

unify((τ1
e
= τ) :: (τ2

e
= τ ′) :: C)

Lemma:For all well-formed τ1, τ2, τ ′1, τ
′
2 and all

well-formed C,

degree((τ1
e
= τ ′1, τ2

e
= τ ′2) :: C) ≺ degree((τ1 → τ2

e
= τ ′1 → τ ′2) :: C)

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Soundness and Completeness

Unification either fails or returns a substitution
that is the least unifier for a constraint C.
A substitution S is a unifier iff unifier(C, S) is
provable

unifier([], S) = True
unifier((τ e

= τ ′) :: C′, S) = S(τ) = S(τ ′) ∧
unifier(C′, S)

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Soundness and Completeness

Substitution ordering

S ≤ S ′ def
= ∃S1.∀α. S ′(α) = S1 ◦ S(α)

Least unifier definition

least(S ,C) = ∀S ′. unifier(C, S ′)→ S ≤ S ′

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Soundness and Completeness

Type of unification algorithm:(
unifier(C, S) ∧ least(S ,C)

)
∨ UnifyFailure(C)

UnifyFailure(C): type that explain the reason of
failure of unification of C.

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Soundness and Completeness

Proofs of soundness and completenes tied with
algorithm definition.

“Holes” mark positions where proof terms are
expected.
Proof obligations generated by holes filled by
custom Ltac scripts

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Automating Proofs

Proof automation is crucial to scale Coq
formalizations.
Ltac scripts fill all proof obligations for
termination, soundness and completeness.
Main tools used for automating proofs:

Custom Ltac scripts for proof state simplification.
Use of auto tactic with hint databases.

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm



Conclusion

Complete formalization of unification in Coq.
Development statistics:

31 lemmas and theorems
34 type and function definitions
Total: 610 lines (94 lines of comments)

Implemention effort on termination: 293 lines
(21 theorems).

Ribeiro, Camarão A Mechanized Textbook Proof of a Type Unification Algorithm


