A Mechanized Textbook Proof of a

Type Unification Algorithm

1 2

Rodrigo Ribeiro Carlos Camardo

1Departamento de Computacio e Sistemas - UFOP

2Departamento de Ciéncia da Computacio - UFMG

XVIII Brazilian Symposium on Formal Methods,
2015

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Introduction

m Type inference is an important mechanism of
modern functional languages, like Haskell and
ML

m Type inference algorithms divided in
m Constraint generation
m Constraint solving

m Constraint solving for parametric polymorphism:
First order unification

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Introduction

m Soundness: Computed substiution is a unifier.

m Completeness: Every unifier can be obtained as
SoS,, for some S, where S. is the computed
substitution.

m Simple algorithms contained in textbooks, e.g:

m Types and Programming Languages, Benjamin
Pierce, The MIT Press, 2002.

m Foundations for Programming Languages, John
Mitchell, The MIT Press, 1996.

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

m Build a sound, complete and “axiom-free”
formalization of unification, following textbooks
presentations.

m First step toward a complete formalization of
type inference algorithm for Haskell.

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Coq Proof Assistant

m Formalization developed using Coq version 8.4.
m Why Coq?
m Mature tool used in several large scale

formalizations: e.g. C compiler, Java Card
plataform and mathematical theorems.

m Code avaliable at:

https://github.com/rodrigogribeiro/
unification

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

https://github.com/rodrigogribeiro/unification
https://github.com/rodrigogribeiro/unification

Coq Proof Assistant

m Proof checking consists of type checking
m Provides tactics to ease proof construction.
m Has built-in DSL for building tactics: Ltac

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Coq Proof Assistant

m Sample theorem — tactic based version
Variables A B C : Prop.

Theorem example : (A -+ B) — (B —C) - A — C.
Proof.

intros H H' HA.

apply H'.

apply H.

assumption.
Qed.

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Coq Proof Assistant

m Sample theorem — term based version

Definition example': (A —B) - (B—>C) > A —C:=
fun (H: A —B) (' : B—C) (HA: A) = H' (HHA).

m We'll use a more familiar notation (not Coq) for
definitions of types and functions

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

m We consider that terms are types, formed by

type variables («), type constructors (c) and
arrows —

T = alc|ToT

m Kinding information needed to model Haskell
types, but:

m The use of kinds is orthogonal to unification
m Kinds are omitted for clarity
m Handling kinds is straightforward

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

m FV(7): free type variables from 7
e . .
m 71 = T»: equality constraint

m Meta-variable C denotes a list of (equality)
constraints

m Size of a type.

size(Ty = 1) = 1+ size(m1) + size(m)
size(T) =1

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Lemma: For all types 71,71, 72, 74 and all lists of
constraints C we have that:

size((1 = 7]) 1 (m = 1)) : C) < size((11 — 1 = 7, — 75) : C)

Proof: Induction over C using the definition of size.

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Lemma: For all types 7,7’ and all lists of
constraints C we have that

size(C) < size((r = 7') :: C)

Proof: Induction over 7 and case analysis over 7/,
using the definition of size.

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Substitutions

m Finite functions from type variables to types.

m Metavariable S denotes substitutions and id
denotes the identity substitution.

m Represented as finite mappings:
[r — 71,y — T

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Applying a Mapping

[a—=Tn—mn = 17—

where: n=loTin
T =[a— T
[— T« = 7

a— 7T = 7
[]

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Substitution Application

m Defined in a variable-by-variable way by
recursion on the applied substitution.

T if S =]
S(7) = { S(ar7]7) fS=[am]S

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Extensionality Lemma

m Used to state completeness of unification.

m Not necessary if we allow ourselves to postulate
function extensionality.

Lemma: For all substitutions S and S, if

S(a) = S'() for all variables «, then S(7) = S'(7)
for all types 7.

Proof: Induction over 7, using the definition of

substitution application.

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Well-Formedness Conditions

m Conditions imposed on types, constraints and
substitutions to give simple proofs of
termination, soundness and completeness.

m During the execution of unify the variable
context (a set of variables) is used to hold the
complement of the unifier domain.

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Well-Formedness Conditions

m Type 7 is well-formed in a variable context V,
written as wf (V, 1), if all type variables that
occur in 7 are in V.

m A constraint 71 = 75 is well-formed, written as
wf(V, m = 73), if both 71 and 7 are
well-formed in V.

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Well-Formedness Conditions

m A list of constraints C is well-formed in V,
written as wf (V, C), if all of its equality
constraints are well-formed in V.

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Well-Formedness Conditions

m A substitution S = {[a — 7]} : S is
well-formed in V, written as wf (V, S), if the
following conditions apply:

macV
m wf(V—{a},1)
m wf(V—{a},5)

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Substitution Composition

m Let 5 be a substitution such that wf(V, $);

m Let S a substitution such that
wf(V — dom(S51), S2).

m We can define composition as:

52051:51++52

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Substitution Composition

Theorem: For all types 7 and all substitutions S,
S, such that wf(V, S1) and wf(V — dom(Sy), S2) we
have that (S0 51) (1) = S(S51(7)).

Proof: By induction over the structure of S,.

Ribeiro, Camario

A Mechanized Textbook Proof of a Type Unification Algor

Occurs Check

m Avoids the generation of cyclic mappings like
[— a — al.

m occurs(a, T) is inhabited iff & € FV(7):

occurs(a, 71 — 1) = occurs(a, 1) V occurs(a, 1)
occurs(a,) = True
occurs(a, T) = False otherwise

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Occurs Check

m Occurs check is crucial to prove termination of
unification.

m Next lemma is important to establish a relation
between application of substitution and the
occurs check.

Lemma: Let 7 be s.t. wf(V,7) and —occurs(a, 7).
Then wf(V —{a}, 7).

Proof: Induction over the structure of 7.

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Unification Algorithm

(1) unify([]) = id
(2) wnify((a = @) :: C) = unify(C)
(3) wnify((a = 7) :: C) = if occurs(a, 7) then fail else
unify([a — 7]C) o [a > 7]
(4) unify((T = @) :: C) = if occurs(a, 7) then fail else
unify([ac — 7]C) o [ac = 7]
(5) wnify((mn —=m=17—17):C)=
unify((n = 7) = (= 7') :: C)
(6) wnify((r = 7') :: C) = if 7 = 7' then unify(C) else fail

Coq's termination checker rejects calls in red.

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Termination

m Termination argument based on the notion of
degree (n, m) of C.
m n: number of type variables in C
m m: total size of types in C.
m Termination argument based on lexicographic
ordering of pairs.

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Termination

m The next lemma is used to convince Coq that
the following call decreases input C:

unity([a — 7]C)

Lemma: For all a € V, all well-formed types 7 and
well-formed lists of constraints C, it holds that

degree([a + 7] C) < degree((a = 7) :: C)

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Termination

m The next lemma is used to convince Coq that
the following call decreases input C:

unify((r1 = 7) =2 (. = 7') =: C)

Lemma:For all well-formed 71, 75, 71, 7 and all
well-formed C,

degree((11 = 7], 70 = 73) : C) < degree((r1 — ™ = 1| — 75) :: C)

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Soundness and Completeness

m Unification either fails or returns a substitution
that is the least unifier for a constraint C.
m A substitution S is a unifier iff unifier(C, S) is
provable
unifier([], S) = True

unifier((t = 7') = C',S) = S(1)=S(7") A
unifier(C', S)

A Mechanized Textbook Proof of a Type Unification Algor

Ribeiro, Camario

Soundness and Completeness

m Substitution ordering
S <5 %35, ¥a. 5 (a) = S0 S()

m Least unifier definition
least(S,C) = VS'. unifier(C,S') - S < S’

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Soundness and Completeness

m Type of unification algorithm:
(unifier(C, S) A least(S, C)) V UnifyFailure(C)

m UnifyFailure(C): type that explain the reason of
failure of unification of C.

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Soundness and Completeness

m Proofs of soundness and completenes tied with
algorithm definition.
m “Holes" mark positions where proof terms are
expected.
m Proof obligations generated by holes filled by
custom Ltac scripts

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Automating Proofs

m Proof automation is crucial to scale Coq
formalizations.

m Ltac scripts fill all proof obligations for
termination, soundness and completeness.
m Main tools used for automating proofs:

m Custom Ltac scripts for proof state simplification.
m Use of auto tactic with hint databases.

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

Conclusion

m Complete formalization of unification in Cog.
m Development statistics:

m 31 lemmas and theorems
m 34 type and function definitions
m Total: 610 lines (94 lines of comments)

m Implemention effort on termination: 293 lines
(21 theorems).

Ribeiro, Camario A Mechanized Textbook Proof of a Type Unification Algor

