A Mechanized Textbook Proof of a
Type Unification Algorithm

Rodrigo Ribeiro! and Carlos Camarao?
! Universidade Federal de Ouro Preto, Jodo Monlevade, Minas Gerais, Brazil
rodrigo@decsi.ufop.br,
2 Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
camarao@dcc.ufmg.br

Abstract. Unification is the core of type inference algorithms for mod-
ern functional programming languages, like Haskell. As a first step to-
wards a formalization of a type inference algorithm for such programming
languages, we present a formalization in Coq of a type unification algo-
rithm that follows classic algorithms presented in programming language
textbooks.

1 Introduction

Modern functional programming languages like Haskell [1] and ML [2] provide
type inference to free the programmer from having to write (almost all) type
annotations in programs. Compilers for these languages can discover missing
type information through a process called type inference [3].

Type inference algorithms are usually divided into two components: con-
straint generation and constraint solving [4]. For languages that use ML-style
(or parametric) polymorphism, constraint solving reduces to first order unifica-
tion.

A sound and complete algorithm for first order unification is due to Robin-
son [5]. The soundness and completeness proofs have a constructive nature, and
can thus be formalized in proof assistant systems based on type theory, like
Coq [6] and Agda [7]. Formalizations of unification have been reported before
in the literature [8-11] using different proof assistants, but none of them follows
the style of textbook proofs (cf. e.g. [12,13]).

As a first step towards a full formalization of a type inference algorithm for
Haskell, in this article, we describe an axiom-free formalization of type unification
in the Coq proof assistant, that follows classic algorithms on type systems for
programming languages [12,13]. The formalization is “axiom-free” because it
does not depend on axioms like function extensionality, proof irrelevance or the
law of the excluded middle, i.e. our results are integrally proven in Coq.

More specifically, our contributions are:

1. A mechanization of a termination proof as it can be found in e.g. [12,13]. In
these books, the proof is described as “easy to check”. In our formalization, it
was necessary to decompose the proof in several lemmas in order to convince
Coq’s termination checker.



2. A correct by construction formalization of unification. In our formalization
the unification function has a dependent type that specifies that unification
produces the most general unifier of a given set of equality constraints, or a
proof that explains why this set of equalities does not have a unifier (i.e. our
unification definition is a view [14] on lists of equality constraints).

We chose Coq to develop this formalization because it is an industrial strength
proof assistant that has been used in several large scale projects such as a Cer-
tified C compiler [15], a Java Card platform [16] and on verification of mathe-
matical theorems (cf. e.g. [17,18]).

The rest of this paper is organized as follows. Section 2 presents a brief in-
troduction to the Coq proof assistant. Section 3 presents some definitions used
in the formalization. Section 4 presents the unification algorithm. Termination,
soundness and completeness proofs are described in Sections 4.1 and 4.2, respec-
tively. Section 5 presents details about proof automation techniques used in our
formalization. Section 6 presents related work and Section 7 concludes.

While all the code on which this paper is based has been developed in Coq,
we adopt a “lighter” syntax in the presentation of its code fragments. In the
introductory Section 2, however, we present small Coq source code pieces. We
chose this presentation style in order to improve readability, because functions
that use dependently typed pattern matching require a high number of type
annotations, that would deviate from our objective of providing a formalization
that is easy to understand. For theorems and lemmas, we sketch the proof strat-
egy but omit tactic scripts. The developed formalization was verified using Coq
version 8.4 and it is available online [19].

2 A Taste of Coq Proof Assistant

Coq is a proof assistant based on the calculus of inductive constructions (CIC)
[6], a higher order typed A-calculus extended with inductive definitions. Theorem
proving in Coq follows the ideas of the so-called “BHK-correspondence”?, where
types represent logical formulas, A-terms represent proofs [20] and the task of
checking if a piece of text is a proof of a given formula corresponds to checking
if the term that represents the proof has the type corresponding to the given
formula.

However, writing a proof term whose type is that of a logical formula can be
a hard task, even for very simple propositions. In order to make the writing of
complex proofs easier, Coq provides tactics, which are commands that can be
used to construct proof terms in a more user friendly way.

As a tiny example, consider the task of proving the following simple formula
of propositional logic:

(A-B)—-»(B—-C)—A—=C

3 Abbreviation of Brouwer, Heyting, Kolmogorov, de Bruijn and Martin-Léf Corre-
spondence. This is also known as the Curry-Howard “isomorphism”.



In Coq, such theorem can be expressed as:

Section EXAMPLE.
Variables A B C : Prop.
Theorem example : (A -> B) -> (B -> C) -> A -> C.
Proof.
intros H H’ HA. apply H’. apply H. assumption.
Qed.
End EXAMPLE.

In the previous source code piece, we have defined a Coq section named EXAMPLE*
which declares variables A, B and C as being propositions (i.e. with type Prop).
Tactic intros introduces variables H, H’ and HA into the (typing) context, re-
spectively with types A => B, B -> C and A and leaves goal C to be proved.
Tactic apply, used with a term t, generates goal P when there exists t: P -> Q
in the typing context and the current goal is Q. Thus, apply H’ changes the goal
from C to B and apply H changes the goal to A. Tactic assumption traverses the
typing context to find a hypothesis that matches with the goal.

We define next a proof of the previous propositional logical formula that, in
contrast to the previous proof, that was built using tactics (intros, apply and
assumption), is coded directly as a function:

Definition example’ : (A -> B) -> (B -> C) -> A -> C :=

fun (H : A -> B) (H> : B -> C) (HA : A) => H’ (H HA).

However, even for very simple theorems, coding a definition directly as a Coq
term can be a hard task. Because of this, the use of tactics has become the
standard way of proving theorems in Coq. Furthermore, the Coq proof assistant
provides not only a great number of tactics but also a domain specific language
for scripted proof automation, called Ltac. In this work, the developed proofs
follow the style advocated by Chlipala [21], where most proofs are built using
Ltac scripts, to automate proof steps and make them more robust. Details about
Ltac can be found in [21, 6].

3 Definitions

3.1 Types

We consider a language of simple types formed by type variables, type constants
(also called type constructors) and functional types given by the following gram-
mar:

Ti=a|c|ToT

where a stands for a type variable and ¢ a type constructor. All meta-variables
(1, @ and ¢) can appear primed or subscripted and as usual we consider that —
associates to the right.

Identifiers for variables and constructors are represented as natural numbers,
following standard practice in formalized meta-theory [22, 23]. We are aware that

4 In Coq, we can use sections to delimit the scope of local variables.



choosing this representation of types is not adequate to represent Haskell’s types,
since it does not allow the occurrence of n-ary type constructors. Using n-ary
type constructors will only clutter definitions due to the need of using kinds®.
Since the presence of kind information is orthogonal to unification, we prefer to
omit it in order to clarify definitions and proofs.

The list of type variables of type 7 is denoted by FV(7).

The size of a given type 7, given by the number of arrows, type variables
and constructors in 7, is denoted by size(7). Formally:

size(T1 — T2) = 1 + size(r1) + size(72)
size(T) = 1 otherwise (7 = « or 7 = ¢, for some «, ¢)

We let 71 = 75 denote the equality constraint between two types 7 and 7o.

Lists of equality constraints are represented by meta-variable C. We use the
left-associative operator :: for constructing lists: a :: x denotes the list formed
by head a and tail x.

The definition of free type variables for constraints and their lists are defined
in a standard way and the size of constraints and constraint lists are defined as
the sum of their constituent types. The following simple lemmas will be later
used to establish termination of the unification algorithm, defined in Section 4.

Lemma 1 For all types 11,7, T2, Ty and all lists of constraints C we have that:
size((11 = 7)) 2 (12 = 73) : C) < size((11 — 72 = 7] — 715) :: C)
Proof. Induction over C using the definition of size.

Lemma 2 For all types 7,7 and all lists of constraints C we have that
size(C) < size((T = 7') :: C)

Proof. Induction over T and case analysis over 7/, using the definition of size.

3.2 Substitutions

Substitutions are functions mapping type variables to types. For convenience,
a substitution is considered as a finite mapping [ay — T1,...,ap, — 75, for
i =1,...,n, which is also abbreviated as [@ — 7| (@ and T denoting sequences
built from sets {aq, ..., a, } and {71, ..., 7, }, respectively). Meta-variable S is used
to denote substitutions.

In our formalization, a mapping [« — 7] is represented as a pair of a variable
and a type. Substitutions are represented as lists of mappings, taking advantage

5 Kinds classify type expressions in the same way as types classify terms. More details
about the use of kinds and high-order operators can be found in [13].



of the fact that a variable never appears twice in a substitution. The domain of
a substitution, denoted by dom/(S), is defined as:

dom(S) = {a|S(a) =T,a # 7}

Following [10], we define substitution application in a variable-by-variable
way; first, let the application of a mapping [a — 7’] to 7 be defined by recursion
over the structure of 7:

[a—=T(r1 = 1) =(la—7]71) = (a— 7] )
[a— T =7
[ — 7] T = 7 otherwise (7 = &' for some o’ # a, or
7 = ¢ for some c)
Next, substitution application follows by recursion on the number of map-
pings of the substitution, using the above defined application of a single mapping;:

T if S =1]
S(r) = {S’([a =) fS=[a—7]:8
Application of a substitution to an equality constraint is defined in a straight-
foward way:

S(r=1)=5(r)=5(r)

In order to maintain our development on a fully constructive ground, we
use the following lemma, to cater for proofs of equality of substitutions. This
lemma is used to prove that the result of the unification algorithm yields the
most general unifier of a given set of types.

Lemma 3 For all substitutions S and S’, if S(a)) = S'(«) for all variables «,
then S(r) = S'(7) for all types 7.

Proof. Induction over 7, using the definition of substitution application.

Substitutions and types are subject to well-formedness conditions, described
in the next section.

3.3 Well-Formedness Conditions

Now, we consider notions of well-formedness with regard to types, substitutions
and constraints. These notions are crucial to give simple proofs for termination,
soundness and completeness of the unification algorithm.

Well-formed conditions are expressed in terms of a type variable context,
V, that contains, in each step of the execution of the unification algorithm, the
complement of the set of type variables that are in the domain of the unifier. This
context is used to formalize some notions that are assumed as immediate facts in
textbooks, like: “at each recursive call of the unification algorithm, the number
of distinct type variables occurring in constraints decreases” or “after applying
a substitution S to a given type 7, we have that FV(S(7)) Ndom(S) = 0.

We consider that:



— A type 7 is well-formed in V, written as wf(V, 1), if all type variables that
occur in 7 are in V.
— A constraint 71 = 75 is well-formed, written as wf(V, 11 £ T9), if both 71 and
7o are well-formed in V.
— A list of constraints C is well-formed in V, written as wf(V,C), if all of its
equality constraints are well-formed in V.
— A substitution S = {[a +— 7]} :: §’ is well-formed in V, written as wf(V,.S),
if the following conditions apply:
e acV
o uf(V—{a},7)
o wf(V—{a}, ")

The requirement that type 7 is well-formed in V — {«} is necessary in order
for [@ — 7] to be a well-formed substitution. This avoids cyclic equalities that
would introduce infinite type expressions.

The well-formedness conditions are defined as recursive Coq functions that
compute dependent types from a given variable context and a type, constraint
or substitution.

A first application of these well-formedness conditions is to enable a simple
definition of composition of substitutions. Let S; and S; be substitutions such
that wf (V, S1) and wf (V — dom(S1), S2). The composition Sp0S; can be defined
simply as the append operation of these substitutions:

Sy 081 =51 ++ 5,

The idea of indexing substitutions by type variables that can appear in its do-
main and its use to give a simple definition of composition was proposed in [10].
We say that a substitution S is more general than S’ written as S < ', if
there exists a substitution S; such that S’ = S; 0 S.
The definition of composition of substitutions satisfies the following theorem:

Theorem 1 (Substitution Composition and Application) For all types T
and all substitutions Sy, So such that wf (V, S1) and wf (V—dom(S1),S2) we have
that (SQ o 51) (7’) = 52(51(7’))

Proof. By induction over the structure of Ss.

3.4 Occurs Check

Type unification algorithms use a well-known occurs check in order to avoid
the generation of cyclic mappings in a substitution, like [ — « — «]. In the
context of finite type expressions, cyclic mappings do not make sense. In order
to define the occurs check, we first define a dependent type, occurs(c, 1), that
is inhabited® only if o € FV(7):

5 According to the BHK-interpretation, a type is inhabited only if it represents a logic
proposition that is provable.



occurs(a, 71 — T2) = occurs(a, 1) V occurs(a, 2)
occurs(a, @) = True
occurs(a, T) = False otherwise
i.e. if 7 = o for some o/ # « or 7 = ¢ for some ¢

Coq types True and False are the unit and empty type’, respectively. Note
that occurs(ca, T) is provable if and only if o € FV(7).

Using type occurs, decidability of the occurs check can be established, by
using the following theorem:

Lemma 4 (Decidability of occurs check) For all variables « and all types
T, we have that either occurs(a, ) or —occurs(a, ) holds.

Proof. Induction over the structure of 7.

If a variable oo does not occur in a well-formed type, this type is well-formed
in a variable context where a does not occur. This simple fact is an important
step used to prove termination of unification. The next lemmas formalize this
notion.

Lemma 5 For all variables ay, s and all variable contexts V, if ay € V and
ag # ag then ag € (V —{aa}).

Proof. Induction over V.

Lemma 6 Let 7 be a well-formed type in a variable context V and let o be a
variable such that —occurs(a, ). Then T is well-formed in V — {a}.

Proof. Induction on the structure of 7, using Lemma 5 in the variable case.

4 The Unification Algorithm

We use the following standard presentation of the first-order unification algo-
rithm, where 7 = 7/ denotes a decidable equality test between 7 and 7’:

Our formalization differs from the presented algorithm (Figure 1) in two
aspects:

— Since this presentation of the unification algorithm is general recursive, i.e.,
the recursive calls aren’t necessarily made on structurally smaller arguments,
we need to define it using recursion on proofs that unify’s arguments form
a well-founded relation [6].

" In type theory terminology, the unit type is a type that has a unique inhabitant and
the empty type is a type that does not have inhabitants. Under BHK-interpretation,
they correspond to a true and false propositions, respectively [20].



(1) wnify([]) = []
(2) wnify((a £ ) = C) = unify(C)

(3) unify((aw = 7) :: C) = if occurs(c, T) then fail else unify([a + 7]C) o [ = 7]
(4) unify((r = @) :: C) = if occurs(a, 7) then fail else umfy([a — 7]C) o [a > 7]
(5) unify((m = 2 =7 —7') = (C) = unify((11 = 7) = (12 = 7') :: C)

(6) unify((t = 7') :: C) = if 7 = 7’ then unify(C) else fail

Fig. 1. Unification algorithm.

— Instead of returning just a substitution that represents the argument con-
straint unifier, we return a proof that such substitution is indeed its most
general unifier or a proof explaining that such unifier does not exist, when
unify fails.

These two aspect are discussed in Sections 4.1 and 4.2, respectively.

It is worth mentioning that there are some Coq extensions that make the def-
initions of general recursive functions and functions defined by pattern matching
on dependent types easier, namely commands Function and Program, respec-
tively. However, according to [24], these are experimental extensions. Thus, we
prefer to use well established approaches to overcome these problems: 1) use of
a recursion principle derived from the definition of a well-founded relation [6]
and 2) annotate every pattern matching construct in order to make explicit the
relation between function argument and return types.

4.1 Termination Proof

The unification algorithm always terminates for any list of equalities, either by
returning their most general unifier or by establishing that there is no unifier. The
termination argument uses a notion of degree of a list of constraints C, written
as degree(C), defined as a pair (m,n), where m is the number of distinct type
variables in C and n is the total size of the types in C. We let (n,m) < (n/,m’)
denote the usual lexicographic ordering of degrees.

Textbooks usually consider it “easy to check” that each clause of the unifica-
tion algorithm either terminates (with success or failure) or else make a recursive
call with a list of constraints that has a lexicographically smaller degree. Since
the implemented unification function is defined by recursion over proofs of lexi-
cographic ordering of degrees, we must ensure that all recursive calls are made
on smaller lists of constraints. In lines 3 and 4 of Figure 1, the recursive calls are
made on a list of constraints of smaller degree, because the list of constraints
[a — 7]C will decrease by one the number of type variables occurring in it. This
is formalized in the following lemma:

Lemma 7 (Substitution application decreases degree) For all variables
a €V, all well-formed types T and well-formed lists of constraints C, it holds



that
degree(Ja = 7] C) < degree((a = 1) :: C)

Proof. Induction over C.

On line 5 of Figure 1, we have that the recursive call is made on a constraint
that has more equalities than the original but has a smaller degree, as shown by
the following lemma.

Lemma 8 (Fewer Arrows implies lower degree) For all well-formed types
T1, T2, Ty, T4 and all well-formed lists of constraints C, it holds that

degree((T1 = 7], 70 = 74) : C) < degree((r1 — 70 = 7] — 73) :: C)
Proof. Immediate from Lemma 1.

Finally, the recursive calls in lines 2 and 6 also decrease the degree of the input
list of constraints, according to the following:

Lemma 9 (Less constraints implies lower degree) For all well-formed types
7, 7" and all well-formed list of constraints C, it holds that

degree(C) < degree({T = 7'} :: C)

Proof. Immediate from Lemma 2.

4.2 Soundness and Completeness Proof

Given an arbitrary list of constraints, the unification algorithm either fails or
returns its most general unifier. We have the following properties:

— Soundness: the substitution produced is a unifier of the constraints.
— Completeness: the returned substitution is the least unifier, according to the
substitution ordering defined in Section 3.2.

A substitution S is called a unifier of a list of constraints C according to
whether unifier(C, S) is provable, where unifier(C, S) is defined by induction on
C as follows:

unifier([], S) = True
unifier((r = 7') 2 C',S) = S(7) = S(7') A unifier(C', S)
A substitution S is a most general unifier of a list of constraints C if, for any
other unifier S’ of C, there exists S; such that S’ = S; o S; formally:
least(S, C) = VS’. unifier(C,S") — 35;.Va. (S1 0 S)(a) = S’ ()

The type of the unification function is a dependent type that ensures the follow-
ing property of the returned substitution S:



(uniﬁer(@, S) A least(S, (C)) V UnifyFailure(C)

where UnifyFailure(C) is a type that encodes the reason why unification of C
fails. There are two possible causes of failure: 1) an occurs check error, 2) an
error caused by trying to unify distinct type constructors.

In the formalization source code, the definition of the unify function contains
“holes”® to mark positions where proof terms are expected. Instead of writing
such proof terms, we left them unspecified and use tactics to fill them with
appropriate proofs. In the companion source code, the unification function is
full of such holes and they mark the position of proof obligations for soundness,
completeness and termination for each equation of the definition of unify.

In order to prove soundness obligations we define several small lemmas that
are direct consequences of the definition of the application of substitutions, which
are omitted for brevity. Other lemmas necessary to ensure soundness are sketched
below. They specify properties of unification and application of substitutions.

Lemma 10 For all type variables «, types 7,7 and substitutions S, if S(a) =
S(7") then S(1) = S([a — 7] 7).

Proof. Induction over the structure of 7.

Lemma 11 For all type variables o, types T, variable contexts V and constraint
sets C, if S(a) = S(7) and unifier(C, S) then unifier(ja — 7] C, S).

Proof. Induction over C using Lemma 10.

Completeness proof obligations are filled by scripted automatic proof tactics
using Lemma 3.

5 Automating Proofs

Most parts of most proofs used to prove properties of programming languages
and of algorithms are exercises that consist of a lot of somewhat tedious steps,
with just a few cases representing the core insights. It is not unusual for mecha-
nized proofs to take significant amounts of code on uninteresting cases and quite
significant effort on writing that code. In order to deal with this problem in our
development, we use Ltac, Coq’s domain specific language for writing custom
tactics, and Coq built-in automatic tactic auto, which implements a Prolog-
like resolution proof construction procedure using hint databases within a depth
limit.

The main Ltac custom tactic used in our development is a proof state simpli-
fier that performs several manipulations on the hypotheses and on the conclusion.

8 A hole in a function definition is a subterm that is left unspecified. In Coq, holes
are represented by underscores and such unspecified parts of a definition are usually
filled by tactic generated terms.



It is defined by means of two tactics, called mysimp and s. Tactic mysimp tries to
reduce the goal and repeatedly applies tactic s to the proof state until all goals
are solved or a failure occurs.

Tactic s, shown in Figure 2, performs pattern matching on a proof state using
Ltac match goal construct. Patterns have the form:

[h; : t1,hy : to ... |- C ] => tac

where each of t; and C are expressions, which represents hypotheses and con-
clusion, respectively, and tac is the tactic that is executed when a successful
match occurs. Variables with question marks can occur in Ltac patterns, and
can appear in tac without the question mark. Names h; are binding occurrences
that can be used in tac to refer to a specific hypothesis. Another aspect worth
mentioning is keyword context. Pattern matching with context [e] is successful
if e occurs as a subexpression of some hypothesis or in the conclusion. In Figure
2, we use context to automate case analysis on equality tests on identifiers and
natural numbers, as shown below

[ |- context[eq_id_dec ?7a ?b] ] =>
destruct (eq_id_dec a b) ; subst ; try congruence

Tactic destruct performs case analysis on a term, subst searchs the context
for a hypothesis of the form x = e or e = x, where x is a variable and e is
an expression, and replaces all occurrences of x by e. Tactic congruence is a
decision procedure for equalities with uninterpreted functions and data type
constructors [6].

Ltac s :=
match goal with
| T H: _ /\ _ |- _]1 => destruct H
I T H: _\/ _ |- _] => destruct H
| [ |- context[eq_id_dec 7a ?b] 1 =>
destruct (eq_id_dec a b) ; subst ; try congruence
| [ |- context[eq_nat_dec 7a 7b] ] =>
destruct (eq_nat_dec a b) ; subst ; try congruence
Il [ x : (id * ty)htype |- _ 1 =>
let t := fresh "t" in destruct x as [x t]
| [ H (_,.) = (_,2) |- _1 => inverts* H
| [ H Some _ = Some _ |- _] => invertsx H
| [ H Some _ = None |- _] => congruence
| [ H : None = Some _ |- _] => congruence
[ L I- _ /\ _1 => split
| [ H: ex _ |- _]1 => destruct H
end
Ltac mysimp := repeat (simpl; s) ; simpl; auto with arith.

Fig. 2. Main proof state simplifier tactic.



Tactic inverts* H generates necessary conditions used to prove H and af-
terwards executes tactic auto.? Tactic split divides a conjunction goal in its
constituent parts.

Besides Ltac scripts, the main tool used to automate proofs in our devel-
opment is tactic auto. This tactic uses a relatively simple principle: a database
of tactics is repeatedly applied to the initial goal, and then to all generated
subgoals, until all goals are solved or a depth limit is reached.'® Databases to
be used — called hint databases — can be specified by command Hint, which
allows declaration of which theorems are part of a certain hint database. The
general form of this command is:

Hint Resolve thml thm2 ... thmn : db.

where thm; are defined lemmas or theorems and db is the database name to
be used. When calling auto a hint database can be specified, using keyword
with. In Figure 2, auto is used with database arith of basic Peano arithmetic
properties. If no database name is specified, theorems are declared to be part of
hint database core. Proof obligations for termination are filled using lemmas 7,
8 e 9 that are included in hint databases. Failures of unification, for a given list
of constraints C, is represented by UnifyFailure and proof obligations related
to failures are also handled by auto, thanks to the inclusion of UnifyFailure
constructors as auto hints using command

Hint Constructors UnifyFailure.

6 Related Work

Formalization of unification algorithms has been the subject of several research
works [8-11].

In Paulson’s work [8] the representation of terms, built by using a binary
operator, uses equivalence classes of finite lists where order and multiplicity
of elements is considered irrelevant, deviating from simple textbook unification
algorithms ([13,12]).

Bove’s formalization of unification [9] starts from a Haskell implementation
and describes how to convert it into a term that can be executed in type the-
ory by acquiring an extra termination argument (a proof of termination for the
actual input) and a proof obligation (that all possible inputs satisfy this termi-
nation argument). This extra termination argument is an inductive type whose
constructors and indices represent the call graph of the defined unification func-
tion. Bove’s technique can be seen as an specific implementation of the technique
for general recursion based on well founded relations [26], which is the one im-
plemented on Coq’s standard library, used in our implementation. Also, Bove
presents soundness and completeness proofs for its implementation together with

9 This tactic is defined on a tactic library developed by Arthur Charguraud [25].
10 The default depth limit used by auto is 5.



the function definition (as occurs with our implementation) as well as by pro-
viding theorems separated from the actual definitions. She argues that the first
formalization avoids code duplication since soundness and completeness proofs
follow the same recursive structure of the unification function. Bove’s implemen-
tation is given in Alf, a dependently typed programming language developed at
Chalmers that is currently unsupported.

McBride [10] develops a unification function that is structurally recursive
on the number of non-unified variables on terms being unified. The idea of its
termination argument is that at each step the unification algorithm gets rid
of one unresolved variable from terms, a property that is carefully represented
with dependent types. Soundness and completeness proofs are given as separate
theorems in a technical report [27]. McBride’s implementation is done on OLEG,
a dependently typed programming language that is nowadays also unsupported.

Kothari [11] describes an implementation of a unification function in Coq
and proves some properties of most general unifiers. Such properties are used
to postulate that unification function does produce most general unifiers on
some formalizations of type inference algorithms in type theory [28]. Kothari’s
implementation does not use any kind of scripted proof automation and it uses
the experimental command Function in order to generate an induction principle
from its unification function structure. He uses this induction principle to prove
properties of the defined unification function.

Avelar et al.’s proof of completeness [29] is not focused on the proof that
the unifier S of types 7, returned by the unification algorithm, is the least of
all existing unifiers of 7. It involves instead properties that specify: i) dom(S) C
FV(7), ii) the contra-domain of S is a subset of FV(7) — dom(S), and iii) if the
unification algorithm fails then there is no unifier. The proofs involve a quite
large piece of code, and the program does not follow simple textbook unification
algorithms. The proofs are based instead on concepts like the first position of
conflict between terms (types) and on resolution of conflicts. More recent work of
Avelar et al. [30] extends the previous formalization by the description of a more
elaborate and efficient first-order unification algorithm. The described algorithm
navigates the tree structure of the two terms being unified in such a way that,
if the two terms are not unifiable then, after the difference at the first position
of conflict between the terms is eliminated through a substitution, the search of
a possible next position of conflict is computed through application of auxiliary
functions starting from the previous position.

7 Conclusion

We have given a complete formalization of termination, soundness and complete-
ness of a type unification algorithm in the Coq proof assistant. To the best of
our knowledge, the proposed formalization is the first to follow the structure
of termination proofs presented in classical textbooks on type systems [13,12].
Soundness and completeness proofs of unification are coupled with the algorithm
definition and are filled by scripted proof tactics using previously proved lemmas.



The developed formalization has 610 lines of code and around 94 lines of com-
ments. The formalization is composed of 31 lemmas and theorems, 34 type and
function definitions and 2 inductive types. Most of the implementation effort has
been done on proving termination, which takes 293 lines of our code, expressed
in 21 theorems. Compared with Kothari’s implementation, that is written in
more than 1000 lines, our code is more compact.

We intend to use this formalization to develop a complete type inference
algorithm for Haskell in the Coq proof assistant. The developed work is available
online [19].

References

1. Peyton Jones, S.: Haskell 98 Language and Libraries: the Revised Report. (2003)

2. Milner, R., Tofte, M., Harper, R.: Definition of standard ML. MIT Press (1990)

3. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst.
Sci. 17(3) (1978) 348-375

4. Pottier, F., Rémy, D.: The essence of ML type inference. In Pierce, B.C., ed.:
Advanced Topics in Types and Programming Languages. MIT Press (2005) 389—
489

5. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.
ACM 12(1) (1965) 23-41

6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer Verlag (2004)

7. Bove, A., Dybjer, P., Norell, U.: A brief overview of agda — a functional lan-
guage with dependent types. In: Proceedings of the 22nd International Conference
on Theorem Proving in Higher Order Logics. TPHOLs ’09, Berlin, Heidelberg,
Springer-Verlag (2009) 73-78

8. Paulson, L.C.: Verifying the unification algorithm in lcf. CoRR ¢s.L0O/9301101

1993

9. ](30ve,)A.: Programming in Martin-Lof type theory: Unification - A non-trivial ex-
ample (November 1999) Licentiate Thesis of the Department of Computer Science,
Chalmers University of Technology.

10. McBride, C.: First-order unification by structural recursion. J. Funct. Program.
13(6) (2003) 1061-1075

11. Kothari, S., Caldwell, J.: A machine checked model of idempotent mgu axioms for
lists of equational constraints. In Fernandez, M., ed.: Proceedings 24th Interna-
tional Workshop on Unification. Volume 42 of EPTCS. (2010) 24-38

12. Mitchell, J.C.: Foundations of Programming Languages. MIT Press, Cambridge,
MA, USA (1996)

13. Pierce, B.C.: Types and programming languages. MIT Press, Cambridge, MA,
USA (2002)

14. McBride, C., McKinna, J.: The view from the left. J. Funct. Program. 14(1)
(2004) 69-111

15. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7) (2009)
107-115

16. Barthe, G., Dufay, G., Jakubiec, L., de Sousa, S.M.: A formal correspondence
between offensive and defensive javacard virtual machines. In Cortesi, A., ed.:
VMCAI Volume 2294 of Lecture Notes in Computer Science., Springer (2002)
32-45



17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

Gonthier, G.: The four colour theorem: Engineering of a formal proof. In Kapur,
D., ed.: ASCM. Volume 5081 of Lecture Notes in Computer Science., Springer
(2007) 333

Gonthier, G.: Engineering mathematics: the odd order theorem proof. In Gia-
cobazzi, R., Cousot, R., eds.: POPL, ACM (2013) 1-2

Ribeiro, R., et al.: A mechanized textbook proof of a type unification algorithm
— on-line repository. https://github.com/rodrigogribeiro/unification (2015)
Sgrensen, M., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Number
v. 10 in Studies in Logic and the Foundations of Mathematics. Elsevier (2006)
Chlipala, A.: Certified Programming with Dependent Types - A Pragmatic Intro-
duction to the Coq Proof Assistant. MIT Press (2013)

de Bruijn, N.: Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the church-rosser theorem. Inda-
gationes Mathematicae (Proceedings) 75(5) (1972) 381 — 392

Charguéraud, A.: The locally nameless representation. J. Autom. Reasoning 49(3)
(2012) 363-408

Coq Developement Team: Coq Proof Assistant — Reference Manual.
http://coq.inria.fr/distrib/current/refman/ / (2014)

Pierce, B.C., Casinghino, C., Gaboardi, M., Greenberg, M., Hritcu, C., Sjoberg,
V., Yorgey, B.: Software Foundations. Electronic textbook (2015)

Nordstrom, B.: Terminating general recursion. BIT Numerical Mathematics 28(3)
(1988) 605-619

McBride, C.: First-order unification by structural recursion — correctness proof
Naraschewski, W., Nipkow, T.: Type inference verified: Algorithm w in is-
abelle/hol. J. Autom. Reason. 23(3) (November 1999) 299-318

Avelar, A.B., de Moura, F.L.C.; Galdino, A.L., Ayala-Rincén, M.: Verification of
the completeness of unification algorithms a la robinson. In Dawar, A.; de Queiroz,
R.J.G.B., eds.: Logic, Language, Information and Computation, 17th International
Workshop, WoLLIC 2010, Brasilia, Brazil, July 6-9, 2010. Proceedings. Volume
6188 of Lecture Notes in Computer Science., Springer (2010) 110-124

Avelar, A.B., Galdino, A.L., de Moura, F.L.C., Ayala-Rincén, M.: First-order
unification in the PVS proof assistant. Logic Journal of the IGPL 22(5) (2014)
758-789



