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Abstract. Property-based testing of compilers or programming lan-
guages semantics is difficult to accomplish because it is hard to design
a random generator for valid programs. Most compiler test tools do not
have a well-specified way of generating type-correct programs, which is
a requirement for such testing activities. In this work, we formalize a
type-directed procedure to generate random well-typed programs in the
context of Featherweight Java, a well-known object-oriented calculus for
the Java programming language. We implement the approach using the
Haskell programming language and verify it against relevant properties
using QuickCheck, a library for property-based testing.
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1 Introduction

Currently, Java is one of the most popular programming languages [16]. It is
a general-purpose, concurrent, strongly typed, class-based object-oriented lan-
guage. Since its release in 1995 by Sun Microsystems, and acquired by Oracle
Corporation, Java has been evolving over time, adding features and program-
ming facilities in its new versions. For example, in a recent major release of Java,
new features such as lambda expressions, method references, and functional in-
terfaces, were added to the core language, offering a programming model that
fuses the object-oriented and functional styles [8].

The adoption of the Java language is growing for large projects, where many
applications have reached a level of complexity for which testing, code reviews,
and human inspection are no longer sufficient quality-assurance guarantees. This
problem increases the need for tools that employ static analysis techniques, aim-
ing to explore all possibilities in an application to guarantee the absence of
unexpected behaviors [5]. The use of formal subsets helps in the understanding
of the problem, and allows the use of automatic tools, since a certain degree
of abstraction is applied, and only properties of interest are used, providing a
degree of confidence that cannot be reached using informal approaches.

Creating tests for programming languages or compilers is difficult since sev-
eral requirements should be respected to produce a valid and useful test case.
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When a person is responsible for this task, tests could be limited by human
imagination, the creator can make assumptions about the implementation, im-
pacting in the quality of the test cases, and the maintenance of such tests is also
an issue when the language evolves. Because of this, there is a growing research
community studying random test generation, which is not an easy task, since
the generated programs should respect the constraints of the programming lan-
guage compiler, such as the correct syntax, or the type-system requirements in
a statically-typed language.

In this context, this work provides the formal specification of a type-directed
procedure for generating Java programs, using the typing rules of Featherweight
Java (FJ) [9] to generate only well-typed programs. FJ is a small core calcu-
lus with a rigorous semantic definition of the main core aspects of Java. The
motivations for using the specification of FJ are that it is very compact, so we
can specify our generation algorithm in a way that it can be extended with
new features, and its minimal syntax, typing rules, and operational semantics
fit well for modeling and proving properties for the compiler and programs. As
far as we know, there is no formal specification of well-typed test generators for
an object-oriented calculus like FJ. This work aims to fill this gap, providing
the description of a generation procedure for FJ programs by using a syntax
directed judgment for generating random type-correct FJ programs, adapting
the approach of Palka et al. [14] in terms of QuickCheck [3]. We are aware that
using only automated testing is not sufficient to ensure safety or correctness, but
it can expose bugs before using more formal approaches, like formalization in a
proof assistant.

Specifically, we made the following contributions:

– We provided a type-directed [13] formal specification for constructing ran-
dom programs. We proved that our specification is sound with respect to FJ
type system, i.e. it generates only well-typed programs.

– We implemented an interpreter3 for FJ and the type-directed algorithm to
generate random FJ programs following our formal specification using the
Haskell programming language.

– We used ‘javac’ as an oracle to compile the random programs constructed
through our type-directed procedure. We also used QuickCheck as a proof
of concept to check type-soundness proofs using the interpreter and the gen-
erated programs4.

The remainder of this text is organized as follows: Section 2 summarizes the
FJ proposal. Section 3 presents the process of generating well-typed random
programs in the context of FJ. Section 4 proves that our generation procedure is
sound with respect to FJ typing rules. Section 5 shows how the results of testing
type-safety properties of FJ with QuickCheck. Section 6 discusses some related
works. Finally, we present the final remarks in Section 7.

3 The source-code for our Haskell interpreter and the complete test suite is available
at: https://github.com/fjpub/fj-qc/.

4 Details of implementation and experiments are presented in our technical report,
which can be found at: https://github.com/fjpub/fj-qc/raw/master/tr.pdf.

https://github.com/fjpub/fj-qc/
https://github.com/fjpub/fj-qc/raw/master/tr.pdf
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2 Featherweight Java

Featherweight Java [9] is a minimal core calculus for Java, in the sense that as
many features of Java as possible are omitted, while maintaining the essential
flavor of the language and its type system. However, this fragment is large enough
to include many useful programs. A program in FJ consists of the declaration
of a set of classes and an expression to be evaluated, that corresponds to the
Java’s main method.

FJ is to Java what λ-calculus is to Haskell. It offers similar operations, provid-
ing classes, methods, attributes, inheritance and dynamic casts with semantics
close to Java’s. The Featherweight Java project favors simplicity over expressiv-
ity and offers only five ways to create terms: object creation, method invocation,
attribute access, casting and variables [9].

FJ semantics provides a purely functional view without side effects. In other
words, attributes in memory are not affected by object operations [15]. Fur-
thermore, interfaces, overloading, call to base class methods, null pointers, base
types, abstract methods, statements, access control, and exceptions are not
present in the language. As the language does not allow side effects, it is pos-
sible to formalize the evaluation just using the FJ syntax, without the need for
auxiliary mechanisms to model the heap [15].

The abstract syntax of FJ is given in Figure 1.

Syntax

L ::= class declarations

class C extends {C f ;K M}
K ::= constructor declarations

C(C f) {super(f); this.f = f ; }
M ::= method declarations

C m(C x) { return e; }
e ::= expressions

x variable
e.f field access
e.m(e) method invocation
new C(e) object creation
(C) e cast

Fig. 1. Syntactic definitions for FJ.

In the syntactic definitions L represents classes, K defines constructors, M

stands for methods, and e refers to the possible expressions. The metavariables
A, B, C, D, E, and F can be used to represent class names, f and g range over field
names, m ranges over method names, x and y range over variables, d and e range
over expressions. We let ϕ : L→ C denote a function that returns a class name
(C) from a given class declaration (L). Throughout this paper, we write C as
shorthand for a possibly empty sequence C1, ..., Cn (similarly for f , x, etc.). An
empty sequence is denoted by •, and the length of a sequence x̄ is written #x̄. The
inclusion of an item x in a sequence X is denoted by x : X, following Haskell’s
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notation for lists. We consider that a finite mapping M is just a sequence of
key-value pairs. Notation M(K) = V if K V ∈ M . Following common practice,
we let the metavariable Γ denote an arbitrary typing environment which consists
of a finite mapping between variables and types.

A class table CT is a mapping from class names, to class declarations L, and
it should satisfy some conditions, such as each class C should be in CT, except
Object, which is a special class; and there are no cycles in the subtyping relation.
Thereby, a program is a pair (CT, e) of a class table and an expression. The FJ
authors presented rules for subtyping and auxiliary definitions (functions fields,
mtype, and mbody), which are omitted from this text for space reasons.

Figure 2 shows the typing rules for FJ expressions.

Γ ` x: Γ (x)
[T-Var]

Γ ` e0: C0 fields(C0) = C̄ f̄

Γ ` e0.fi: Ci
[T-Field]

mtype(m, C0) = D̄ → C
Γ ` e0 : C0 Γ ` ē : C̄ C̄ <: D̄

Γ ` e0.m(ē) : C
[T-Invk]

fields(C) = D̄ f̄
Γ ` ē : C̄ C̄ <: D̄

Γ ` new C(ē) : C
[T-New]

Γ ` e0 : D D <: C

Γ ` (C) e0 : C
[T-UCast]

Γ ` e0 : D C <: D C 6= D

Γ ` (C) e0 : C
[T-DCast]

Γ ` e0 : D C ≮: D D ≮: C
stupid warning

Γ ` (C) e0 : C
[T-SCast]

Fig. 2. Expression typing.

The typing judgment for expressions has the form Γ ` e: C, meaning that in
the environment Γ , expression e has type C. The typing rules are syntax directed,
with one rule for each form of expression, save that there are three rules for casts.
The rule T-Var results in the type of a variable x according to the context Γ . If
the variable x is not contained in Γ , the result is undefined. Similarly, the result
is undefined when calling the functions fields, mtype, and mbody in cases when
the target class or the methods do not exist in the given class. The rule T-Field

applies the typing judgment on the subexpression e0, which results in the type
C0. Then it obtains the fields of class C0, matching the position of fi in the
resultant list, to return the respective type Ci. The rule T-Invk also applies the
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typing judgment on the subexpression e0, which results in the type C0, then
it uses mtype to get the formal parameter types D̄ and the return type C. The
formal parameter types are used to check if the actual parameters ē are subtypes
of them, and in this case, resulting in the return type C. The rule T-New checks if
the actual parameters are a subtype of the constructor formal parameters, which
are obtained by using the function fields. There are three rules for casts: one for
upcasts, where the subject is a subclass of the target; one for downcasts, where
the target is a subclass of the subject; and another for stupid casts, where the
target is unrelated to the subject. Even considering that Java’s compiler rejects
as ill-typed an expression containing a stupid cast, the authors found that a rule
of this kind is necessary to formulate type soundness proofs5.

Figure 3 shows the rules to check if methods and classes are well-formed.

Method typing

x̄: C̄, this: C ` e0: E0 E0 <: C0

class C extends D {...}
if mtype(m, D) = D̄ → D0,
then C̄ = D̄ and C0 = D0

C0 m(C̄ x̄) { return e0; } OK in C

Class typing

K = C(D̄ ḡ, C̄ f̄) { super(ḡ); this.̄f = f̄; }
fields(D) = D̄ ḡ M̄ OK in C

class C extends D { C̄ f̄; K M̄ } OK

Fig. 3. Method and class typing.

The rule for method typing checks if a method declaration M is well-formed
when it occurs in a class C. It uses the expression typing judgment on the body
of the method, with the context Γ augmented with variables from the formal
parameters with their declared types, and the special variable this, with type
C. The rule for class typing checks if a class is well-formed, by checking if the
constructor applies super to the fields of the superclass and initializes the fields
declared in this class, and that each method declaration in the class is well-
formed.

The authors also presented the semantic rules for FJ, which are omitted
here, but can be found in the original paper [9]. FJ calculus is intended to be a
starting point for the study of various operational features of object-oriented pro-
gramming in Java-like languages, being compact enough to make rigorous proof
feasible. Besides the rules for evaluation and type-checking rules, the authors
presented proofs of type soundness for FJ as another important contribution,
which will be explored by our test suite in the next sections.

5 A detailed explanation about stupid casts can be found in p. 260 of [15].
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3 Program Generation

The creation of tests for a programming language semantics or compiler is time-
consuming. First, because it should respect the programming language require-
ments, in order to produce a valid test case. Second, if the test cases are created
by a person, it stays limited by human imagination, where obscure corner cases
could be overlooked. If the compiler writers are producing the test cases, they
can be biased, since they can make assumptions about their implementation or
about what the language should do. Furthermore, when the language evolves,
previous test cases could be an issue, considering the validity of some old tests
may change if the language semantics is altered [1].

Considering the presented problem, there is a growing research field explor-
ing random test generation. However, generating good test programs is not an
easy task, since these programs should have a structure that is accepted by the
compiler, respecting some constraints, which can be as simple as a program hav-
ing the correct syntax, or more complex such as a program being type-correct
in a statically-typed programming language [14].

For generating random programs in the context of FJ, we follow two distinct
phases, expression and class generation, generalizing the approach of [14] con-
sidering that FJ has a nominal type system instead of a structural one. In this
way, we have specified a generation rule inspired by each typing rule, both for
expression generation and class table generation.

3.1 Expression Generation

We assume that a class table CT is a finite mapping between names and its
corresponding classes. We let dom(CT) denote the set of names in the domain
of the finite mapping CT. The generation algorithm uses a function ξ : [a]→ a,
which returns a random element from an input list. We slightly abuse notation
by using set operations on lists (sequences) and its meaning is as usual.

The expression generation is represented by the following judgment:

CT ; Γ ; C → e (1)

There CT is a class table, Γ is a typing environment, C is a type name and
e is the produced expression.

For generating variables, we just need to select a name from the typing en-
vironment, which has a type C.

CT ; Γ ; C → ξ ({ x | Γ (x) = C })
[G-Var]

For fields access, we first need to generate a list of candidate type names for
generating an expression with type C′ which has at least one field whose type is
C. We name such list Cc:

Cc = { C1 | C1 ∈ dom(CT) ∧ ∃ x. C x ∈ fields(C1) }
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Now, we can build a random expression by using a type randomly chosen
from it.

C′ = ξ(Cc)

CT ; Γ ; C′ → e

Since type C′ can have more than one field with type C, we need to choose
one of them (note that, by construction, such set is not empty).

C f = ξ({C x | C x ∈ fields(C′)}

The rule G-Field combines these previous steps to generate a field access
expression:

Cc = {C1 | C1 ∈ dom(CT) ∧ ∃ x. C x ∈ fields(C1)}
C′ = ξ(Cc)

CT ; Γ ; C′ → e
C f = ξ({C x | C x ∈ fields(C′)}

CT ; Γ ; C → e.f
[G-Field]

For method invocations, we first need to find all classes which have method
signatures with return type C. As before, we name such candidate class list as Cc.

Cc = {C1 | C1 ∈ dom(CT) ∧ ∃ m D̄. mtype(m, C1) = D̄ → C}

Next, we need to generate an expression e0 from a type chosen from Cc, we
name such type as C′.

C′ = ξ(Cc)

CT ; Γ ; C′ → e0

From such type C′, we need to chose which method with return type C will be
called. For this, we select a random signature from its list of candidate methods.

Mc = {(m, D̄ → C) | ∃ m. mtype(m , C′) = D̄ → C}
(m′, D̄′ → C) = ξ(Mc)

Next, we need to generate arguments for all formal parameters of method
m′. For this, since arguments could be of any subtype of the formal parameter
type, we need to choose it from the set of all candidate subtypes.

First, we define a function called subtypes, which return a list of all subtypes
of some type.

subtypes(CT, Object) = {Object}
subtypes(CT, C) = {C} ∪ subtypes(CT, D), if class C extends D ∈ CT

Using this function, we can build the list of arguments for a method call.

ā = {e | D ∈ D̄′ ∧ CT ; Γ ; ξ(subtypes(CT, D)) → e }
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The rule G-Invk combine all these previous steps to produce a method call.

Cc = {C1 | C1 ∈ dom(CT) ∧ ∃ m D̄. mtype(m, C1) = D̄ → C}
C′ = ξ(Cc)

CT ; Γ ; C′ → e0
Mc = {(m, D̄ → C) | ∃ m. mtype(m , C′) = D̄ → C}

(m′, D̄′ → C) = ξ(Mc)
ā = {e | D ∈ D̄′ ∧ CT ; Γ ; ξ(subtypes(CT, D)) → e}

CT ; Γ ; C → e0.m′(ā)
[G-Invk]

The generation of a random object creation expression is straightforward:
First, we need to get all field types of the class C and produce arguments for C’s
constructor parameters, as demonstrated by rule G-New.

F̄ = {C′ | C′ f ∈ fields(C)}
ā = {e | F ∈ F̄ ∧ CT ; Γ ; ξ(subtypes(CT, F)) → e}

CT ; Γ ; C → new C(ā)
[G-New]

We construct upper casts expressions for a type C using the G-UCast rule.

D̄ = subtypes(CT, C)
CT ; Γ ; ξ(D̄) → e

CT ; Γ ; C → (C) e
[G-UCast]

Although we do not start a program with downcasts or stupid casts, because
expressions generated by these typing rules can reduce to cast unsafe terms [9],
we defined the generation process in the rules G-DCast and G-SCast, since they
can be used to build inner subexpressions.

For generating downcasts, first we need the following function, which returns
the set of super types of a given class name C.

supertypes(CT, Object) = •
supertypes(CT, C) = {D} ∪ supertypes(CT, D), if class C extends D ∈ CT

Then, we can produce the rule G-DCast to generate a downcast expression.

D̄ = supertypes(CT,C)
CT ; Γ ; ξ(D̄) → e

CT ; Γ ; C → (C) e
[G-DCast]

The generation of stupid casts has a similar process, except that it generates
a list of unrelated classes, as we can see in the first line of the rule G-SCast.

C̄ = dom(CT) - (subtypes(CT,C) ∪ supertypes(CT,C))
CT ; Γ ; ξ(C̄) → e

CT ; Γ ; C → (C) e
[G-SCast]

Considering the presented generation rules, we are able to produce well-typed
expressions for each constructor of FJ.
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3.2 Class Table Generation

To generate a class table, we assume the existence of an enumerable set Cn of
class names and Vn of variable names. The generation rules are parameterized
by an integer n which determines the number of classes that will populate the
resulting table, a limit m for the number of members in each class and a limit p
for the number of formal parameters in the generated methods. This procedure
is expressed by the following judgment:

CT ; n ; m ; p → CT′

It is responsible to generate n classes using as input the information in class
table CT (which can be empty), each class will have up to m members. As
a result, the judgment will produce a new class table CT ′. As expected, this
judgment is defined by recursion on n:

CT ; 0 ; m ; p → CT
[CT-Base]

CT ; m ; p → L
ϕ(L) L : CT ; n ; m ; p → CT′

CT ; n + 1 ; m ; p → CT′ [CT-Step]

Rule CT-Base specifies when the class table generation procedure stops. Rule
CT-Step uses a specific judgment to generate a new class, inserts it in the class
table CT, and generate the next n classes using the recursive call ϕ(L) L : CT ;
n ; m ; p → CT ′. The following judgment presents how classes are generated:

CT ; m ; p → C

It generates a new class, with at most m members, with at most p formal
parameters in each method, using as a starting point a given class table. First,
we create a new name which is not in the domain of the input class table, using:

C = ξ(Cn - (dom(CT) ∪ {Object}))

This rule selects a random class name from the set Cn excluding the names
in the domain of CT and Object. Next, we need to generate a valid super class
name, which can be anyone of the set formed by the domain of current class
table CT and Object:

D = ξ(dom(CT) ∪ {Object})

After generating a class name and its super class, we need to generate its
members. For this, we generate random values for the number of fields and
methods, named fn and mn, respectively. Using such parameters we build the
fields and methods for a given class.

Field generation is straightforward. It proceeds by recursion on n, as shown
below. Note that we maintain a set of already used attribute names Un to avoid
duplicates.
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CT ; 0 ; Un → •
[G-Fields-Base]

C = ξ(dom(CT) ∪ {Object})
f = ξ(Vn - Un)

CT ; n ; f : Un → C̄ f̄

CT ; n + 1 ; Un → C f : C̄ f̄
[G-Fields-Step]

Generation of the method list proceeds by recursion on m, as shown below.
We also maintain a set of already used method names Un to avoid method
overload, which is not supported by FJ. The rule G-Method-Step uses a specific
judgment to generate each method, which is described by rule G-Method.

CT ; C ; 0 ; p ; Un → •
[G-Methods-Base]

x = ξ(Vn - Un)
CT ; C ; p ; x → M

CT ; C ; m ; p ; x : Un → M̄

CT ; C ; m + 1 ; p ; Un → M : M̄
[G-Methods-Step]

The rule G-Method uses an auxiliary judgment for generating formal pa-
rameters (note that we can generate an empty parameter list). To produce the
expression, which defines the method body, we build a typing environment us-
ing the formal parameters and a variable this to denote this special object.
Also, such expression is generated using a type that can be any of the possible
subtypes of the method return type C0.

n = ξ([0..(p - 1)])
CT ; n ; • → C̄ x̄

C0 = ξ(dom(CT) ∪ {Object})
Γ = C̄ x̄, this : C

D̄ = subtypes(CT,C0)
E0 = ξ(D̄)

CT ; Γ ; E0 → e

CT ; C ; p ; m → (C0 m (C̄ x̄) {return e;})
[G-Method]

We create the formal parameters for methods using a simple recursive judg-
ment that keeps a set of already used variable names Un to ensure that all
variables produced are distinct.

CT ; 0 ; Un → •
[G-Param-Base]

C = ξ(dom(CT) ∪ {Object})
x = ξ(Vn - Un)

CT ; n ; x : Un → C̄ x̄

CT ; n + 1 ; Un → (C x : C̄ x̄)
[G-Param-Step]
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Finally, using the generated class name and its super class, we build its
constructor definition using the judgment:

CT ; C ; D → K

Rule G-Constr represents the process to generate the constructor.

D̄ ḡ = fields(D)
C̄ f̄ = fields(C) - D̄ ḡ

CT ; C ; D → ( C (D̄ ḡ, C̄ f̄) { super(ḡ) ; this.̄f = f̄ } )
[G-Constr]

The process for generating a complete class is summarized by rule G-Class,
which is composed by all previously presented rules.

C = ξ(Cn - (dom(CT) ∪ {Object}))
D = ξ(dom(CT) ∪ {Object})

fn = ξ([1..m])
mn = ξ([1..(m - fn)])

CT′ = C (class C extends D {}) : CT
CT′ ; fn ; • → C̄ f̄

CT′′ = C (class C extends D {C̄ f̄}) : CT
CT′′ ; C ; mn ; p ; • → M̄

CT′ ; C ; D → K

CT ; m ; p → (class C extends D { C̄ f̄; K M̄ })
[G-Class]

Considering the presented generation rules, we are able to fill a class table
with well-formed classes in respect to FJ typing rules.

4 Soundness of Program Generation

The generation algorithm described in the previous section produces only well-
typed FJ programs.

Lemma 1 (Soundness of expression generation). Let CT be a well-formed
class table. For all Γ and C ∈ dom(CT), if CT ; Γ ; C → e then exists D, such
that Γ ` e : D and D <: C.

Proof. The proof proceeds by induction on the derivation of CT ; Γ ; C → e
doing a case analysis on the last rule used to deduce CT ; Γ ; C → e. We show
some cases of the proof.

Case (G-Var): Then, e = x, for some variable x. By rule G-Var, x = ξ({y
| Γ (y) = C}) and from this we can deduce that Γ (x) = C and the conclusion
follows by rule T-Var.

Case (G-Invk): Then, e = e0.m(ē) for some e0 and ē; CT ; Γ ; C′ → e0, for
some C′; there exists (m, D̄′ → C), such that mtype(m, C′) = D̄→ C and for all
e′ ∈ ē, D ∈ D̄′, CT ; Γ ; ξ(subtypes(CT,D)) → e′. By the induction hypothesis,
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we have that: Γ ` e0 : D′, D′ <: C′, for all e′ ∈ ē, D ∈ D̄′. Γ ` e′ : B, B <: D
and the conclusion follows by the rule T-Invk and the definition of subtyping
relation.

Lemma 2 (Soundness of subtypes). Let CT be a well-formed class table and
C ∈ dom(CT). For all D. if D ∈ subtypes(CT,C ) then C <: D.

Proof. Straightforward induction on the structure of the result of subtypes(CT,
C).

Lemma 3 (Soundness of method generation). Let CT be a well-formed
class table and C ∈ dom(CT) ∪ {Object}. For all p and m, if CT ; C ; p ; m
→ C0 m (C̄ x̄) { return e; } then C0 m (C̄ x̄) { return e; } OK in C.

Proof. By rule G-Method, we have that:

– C̄ ⊆ dom(CT)
– Γ = {C̄ x̄, this : C}
– C0 = ξ(dom(CT) ∪ {Object})
– D̄ = subtypes(CT,C0)
– CT ; Γ ; E0 → e
– E0 = ξ(D̄)

By Lemma 2, we have that for all D ∈ D̄, C0 <: D.
By Lemma 1, we have that Γ ` e : E′ and E′ <: E0.
Since CT is well-formed, then mtype(m, C) = C̄ → C0 and the conclusion

follows by rule method typing and the definition of the subtyping relation.

Lemma 4 (Soundness of class generation). Let CT be a well-formed class
table. For all m, p, if CT ; m ; p → CD then CD OK.

Proof. By rule G-Class, we have that:

– CD = class C extends D { C̄ f̄ ; K M̄ }
– C = ξ(Cn - (dom(CT) ∪ Object))
– D = ξ(dom(CT) ∪ Object)
– fn = ξ([1..m])
– mn = ξ([1..(m - fn)])
– CT ′ = C (class C extends D {}) : CT
– CT ′ ; fn → C̄ f̄
– CT ′′ = C (class C extends D { C̄ f̄; }) : CT
– CT ′′ ; C ; mn ; p ; • → M̄
– CT ′ ; C ; D → K

By Lemma 3, we have that for all m. m ∈ M̄, m OK.
By rule (G-Constr) we have that K = C (D̄ ḡ, C̄ f̄) {super(ḡ); this.̄f = f̄;},

where D̄ ḡ = fields(D).
The conclusion follows by rule class typing.
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Lemma 5. Let CT be a well-formed class table. For all n, m and p, if CT ; n ;
m ; p → CT′ then for all C, D ∈ dom(CT′), if C <: D and D <: C then CT(C)
= CT(D).

Proof. By induction on n.

Case n = 0: We have that CT ′ = CT. Conclusion follows by the fact that
CT is a well-formed class table.

Case n = n′ + 1: Suppose C, D ∈ dom(CT′), C <: D and D <: C. By the
induction hypothesis we have that for all CT1, C′, D′ ∈ CT1, if C′ <: D′ and D′

<: C′ then C′ = D′. Let L be a class such CT ; m ; p → L. By Lemma 4, we
have L OK in CT. By the induction hypothesis on ϕ(L) L : CT ; n ; p → CT′

we have the desired conclusion.

Lemma 6 (Soundness of class table generation). Let CT be a well-formed
class table. For all n, m and p, if CT ; n ; m ; p→ CT′ then CT′ is a well-formed
class table.

Proof. By induction on n.

Case n = 0: We have that CT ′ = CT and the conclusion follows.

Case n = n′ + 1: By rule CT-Step we have that:

– CT ; m ; p → L
– ϕ(L) L : CT ; n ; m ; p → CT ′

By Lemma 4, we have that L OK. By the induction hypothesis we have that
CT ′ is a well-formed class table. By Lemma 5, we have that subtyping in CT ′ is
antisymmetric. Conclusion follows by the definition of a well-formed class table.

Theorem 1 (Soundness of program generation). For all n, m and p, if •
; n ; m ; p → CT then:

(1) CT is a well-formed class table.
(2) For all C ∈ CT, we have C OK.

Proof. Corollary of Lemmas 4, 5 and 6.

5 Quick-Checking Semantic Properties

As a proof of concept we have implemented an interpreter following the seman-
tics of FJ and used random generated programs to test this interpreter against
some properties6, including those for type-soundness presented in the FJ original
paper. The properties were specified and tested using QuickCheck [3]. Besides
progress and preservation of the interpreter, we also used QuickCheck to verify

6 More details about using QuickCheck for testing the semantic properties of FJ are
in our technical report at: https://github.com/fjpub/fj-qc/raw/master/tr.pdf.

https://github.com/fjpub/fj-qc/raw/master/tr.pdf
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if all generated class tables are well-formed, and also if all generated expressions
are well-typed and cast-safe. Furthermore, our tests cases were generated into
Java files, and compiled using the Oracle’s standard ‘javac’ compiler (the closest
implementation of Java Language Specification) to validate our generator algo-
rithm. After compiling and running many thousands of well-succeeded tests, we
gain a high-degree of confidence in our type-directed procedure for generating
programs.

As a way to measure the quality of the generated test cases, we used the
Haskell Program Coverage tool [7] to check how much of the interpreter code
base was covered by our test suite. Results of code coverage for each module
(evaluator, type-checker, auxiliary functions, and total, respectively) are pre-
sented in Figure 4.

Fig. 4. Test coverage results.

Although not having 100% of code coverage, the proposed generation algo-
rithm was capable to verify the main safety properties present in FJ paper. After
analyzing test coverage results, we could observe that code not reached by test
cases consisted of error control when evaluating the semantics or when dealing
with expressions that are not well-typed.

6 Related Work

Property-based testing is a technique for validating code against an executable
specification by automatically generating test-data, typically in a random and/or
exhaustive fashion [2]. However, the generation of random test-data for testing
compilers represents a challenge by itself, since it is hard to come up with a gen-
erator of valid test data for compilers, and it is difficult to provide a specification
that decides what should be the correct behavior of a compiler [14]. As a conse-
quence of this, random testing for finding bugs in compilers and programming
language tools received some attention in recent years.

The testing tool Csmith [17] is a generator of programs for language C, sup-
porting a large number of language features, which was used to find a number of
bugs in compilers such as GCC, LLVM, etc. Le et al. [11] developed a method-
ology that uses differential testing for C compilers. Lindig [12] created a tool for
testing the C function calling convention of the GCC compiler, which randomly
generates types of functions. There are also efforts on randomly generate case
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tests for other languages [6]. All of these projects rely on informal approaches,
while ours is described formally and applied to property-based testing.

More specifically, Daniel et al. [4] generate random Java programs to test
refactoring engines in Eclipse and NetBeans. Klein et al. [10] generated random
programs to test an object-oriented library. Allwood and Eisenbach also used
FJ as a basis to define a test suite for the mainstream programming language
in question, testing how much of coverage their approach was capable to obtain.
These projects are closed related to ours since they are generating code in the
object-oriented context. The difference of our approach is that we generated
randomly complete classes and expressions, and proved that both are well-formed
and well-typed. Another difference is that we also used property-based testing
to check that the properties of the FJ semantics hold by using the generated
programs.

The work of Palka, Claessen and Hughes [14] also used the QuickCheck li-
brary in their work aiming to generate λ-terms to test the GHC compiler. Our
approach was somewhat inspired by theirs, in the sense we also used QuickCheck
and the typing rules for generating well-typed terms. Unlike their approach, we
provided a standard small-step operational semantics to describe our generation
algorithm.

7 Conclusion

In this work, we presented a syntax directed judgment for generating random
type correct FJ programs, proving soundness with respect to FJ typing rules,
and using property-based testing to verify it. The lightweight approach provided
by QuickCheck allows to experiment with different semantic designs and imple-
mentations and to quickly check any changes. During the development of this
work, we have changed our definitions many times, both as a result of correct-
ing errors and streamlining the presentation. Ensuring that our changes were
consistent was simply a matter of re-running the test suite. Encoding the type
soundness properties as Haskell functions provides a clean and concise imple-
mentation that helps not only to fix bugs but also to improve understanding the
meaning of the presented semantic properties.

As future work, we intend to use Coq to provide formally certified proofs for
our generation procedure, as well as for the FJ semantics, showing that they do
enjoy safety properties. We can also to explore the approach used in our test
suite for other FJ extensions, besides using other tools like QuickChick with the
same purpose.
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