
Towards certified virtual machine-based regular
expression parsing

Thales Delfino1 Rodrigo Ribeiro1

1Departament of Computer Science
Universidade Federal de Ouro Preto

September 20, 2018

Introduction

I Parsing is pervasive in computing
I String search tools, lexical analysers...
I Binary data files like images, videos ...

I Our focus: Regular Languages (RLs)
I Languages denoted by Regular Expressions (REs) and

equivalent formalisms

Introduction

I Approaches for RE parsing:
I Representation using FSM.
I Derivatives for RE.

I Other approach: use of VM.
I Pioneered by Knuth in the 70’s for top-down parsing of CFG.
I Revived by Cox in the context of REs.

Introduction

I RE VM by Cox.
I RE are high-level programs executed by the VM.
I RE are compiled to a sequence of VM instructions.

I Problems with Cox’s VM:
I Poorly specified, no correctness guarantees.
I No disambiguation strategy specified.

I Our work:
I A small-step operational semantics for RE parsing.
I Semantics similar to abstract machines for λ-calculus (e.g.

SECD and Krivine’s machines).

Our contributions

I A small-step semantics for RE parsing inspired by Thompson’s
NFA construction.

I Prototype implementation of the semantics in Haskell.

I Use of property-based testing to verify it against a simple
(and correct) implementation of RE parsing by Fisher et. al.

I Our semantics outputs bit-codes to represent parse trees for
REs. We use Quickcheck to verify that produced codes
correspond to valid parsing evidence

Background — RE Syntax

I RE Syntax

e ::= ∅ | ε | a | e e | e + e | e?

I Haskell Code

data Regex = ∅ | ε | Chr Char | Regex • Regex
| Regex + Regex | Star Regex

Background - RE Semantics

ε ∈ JεK
{Eps} a ∈ Σ

a ∈ JaK
{Chr}

s ∈ JeK
s ∈ Je + e ′K

{Left}
s ′ ∈ Je ′K

s ′ ∈ Je + e ′K
{Right}

ε ∈ Je?K
{StarBase}

s ∈ JeK s ′ ∈ Je?K
ss ′ ∈ Je?K

{StarRec}

s ∈ JeK s ′ ∈ Je ′K
ss ′ ∈ Jee ′K

{Cat}

Parse trees for REs

I We interpret RE as types and parse tree as terms.
I Informally:

I leafs: empty string and character.
I concatenation: pair of parse trees.
I choice: just the branch of chosen RE.
I Kleene star: list of parse trees.

I In Haskell:

data Tree = () | Chr Char | Tree • Tree | InL Tree
| InR Tree | List [Tree]

Parse trees for RE — Example

List

InL

•

Chr a Chr b

InR

Chr c

InL

•

Chr a Chr b

Figure: Parse tree for RE: (ab + c)? and the string w = abcab.

Parse trees typing relation

` () : ε ` Chr a : a
` t : e

` InL t : e + e ′

` t′ : e ′

` InR t′ : e + e ′
` t : e ` t′ : e ′

` t • t′ : ee ′
∀t.t ∈ ts→` t : e
` List ts : e?

Relating parse trees and RE semantics

I Using function flat.

I Property: Let t be a parse tree for a RE e and a string s.
Then, flat(t) = s and s ∈ JeK.

flat :: Tree→ String
flat () = ""

flat (Chr c) = [c]
flat (t • t′) = flat t ++ flat t′

flat (InL t) = flat t
flat (InR t) = flat t
flat (List ts) = concatMap flat ts

Bit-codes for parse trees

I Instead of using parse trees...
I We can use bit-codes in order to build memory efficient

representations of evidence.

I Bit-codes mark...
I which branch of choice was chosen during parsing: 0b for left ;

1b for right.
I matchings done by the Kleene star operator: 0b marks the

beginning of a new match; 1b finish the list of matchings.

Bit codes as parse trees for RE — Example

List

InL

•

Chr a Chr b

0b

0b

InR

Chr c

1b

0b

InL

•

Chr a Chr b

0b

0b

•

1b

Figure: Parse tree for RE: (ab + c)? and the string w = abcab.

Relating bit-codes and REs

I Typing relation for bit-codes.

[] B ε [] B a
bs B e

0b : bs B e + e ′

bs B e ′

1b : bs B e + e ′
bs B e bs′ B e ′

bs ++ bs′ B ee ′ [1b] B e?

bs B e bss B e?

0b : bs ++ bss B e?

Relating bit-codes and parse trees

I Using functions code and decode.

type Code = [Bit]

code :: Regex→ Tree→ Code
decode :: Regex→ Code→ Maybe Tree

I Correctness property:
I if ` t : e then (code e t) B e
I decode e (code e t) ≡ Just t

Proposed semantics — (I)

I We use evaluation contexts to represent how to reduce an
input RE.

I Context syntax:

E []→ E [] + e | e + E [] | E [] e | e E [] | ?

I We represent contexts using zippers (data type derivatives)
for RE data type:

data Hole = InChoiceL Regex | InChoiceR Regex
| InCatL Regex | InCatR Regex | InStar

Proposed semantics — (II)

I Semantics judgment express transitions between
configurations: c → c ′

I Parse errors ⇒ stuck states.

Proposed semantics — (III)

I Configurations of the form 〈d , e, c , b, s〉 are built from:
I d is a direction, which specifies if the semantics is starting

(denoted by B) or finishing (F) the processing of the current
expression e.

I e is the current expression being evaluated;
I c is a context in which e occurs. Contexts are just a list of

Hole type in our implementation.
I b is a bit-code for the current parsing result, in reverse order.
I s is the input string currently being processed.

I Acceptance configurations: 〈F , e, [], b, ε〉

Proposed semantics — (III)

I Rule for Eps:

〈B, ε, c , b, s〉 → 〈F , ε, c , b, s〉
(Eps)

I Corresponding NFA transition:

ε

Proposed semantics — (IV)

I Rule for Chr:

〈B, a, c, b, a : s〉 → 〈F , a, c, b, s〉
(Chr)

I Corresponding NFA transition:

a

Proposed semantics — (V)

I Trying the left hand side of e1 + e2.

c ′ = E [] + e ′ : c

〈B, e + e ′, c , b, s〉 → 〈B, e, c ′, b, s〉
(LeftB)

I Transition in red.

N(e1)

N(e2)

ε

ε

ε

ε

Proposed semantics — (VI)

I Finishing the left hand side of e1 + e2.

c = E [] + e ′ : c ′

〈F , e, c, b, s〉 → 〈F , e + e ′, c ′, 0b : b, s〉
(LeftE)

I Transition in blue.

N(e1)

N(e2)

ε

ε

ε

ε

Test suite

I We use Quickcheck to generate random non-problematic REs.

I Problematic REs have the form e? where ε ∈ JeK.
I Our semantics can be extended to problematic REs

straightforwardly.

I For a given RE, we have random generators for accepted and
rejected strings.

Properties tested

I Our semantics accepts only and all the strings in the language
described by the input RE.

I Generating random strings that should be accepted.
I Generating random strings that should be rejected.

Properties tested

I Our semantics generates valid parsing evidence:
I the bit-codes can be parsed into a valid parse tree t for the

random produced RE e, i.e. ` t : e holds;
I flat t = s and
I code e t = bs.

Code coverage results

I 99% of code coverage by the test suite.

Current status

I We have a Coq formalization of a correct interpreter for this
semantics.

I Current work:
I On going formalization of the equivalence between the

proposed semantics and the standard RE semantics.
I Proof that the semantics follows the greedy disambiguation

strategy.

Conclusion

I We developed a small-step semantics for RE parsing inspired
by classical results of automata theory.

I We use property-based testing to check relevant properties of
the semantics, before using a proof-assistant to mechanize the
results.

I Next steps:
I Finish Coq proofs and improve efficiency.

