Towards certified virtual machine-based regular
expression parsing

Thales Delfino! Rodrigo Ribeiro!

IDepartament of Computer Science
Universidade Federal de Ouro Preto

September 20, 2018

Introduction

» Parsing is pervasive in computing
» String search tools, lexical analysers...
» Binary data files like images, videos ...
» Our focus: Regular Languages (RLs)

» Languages denoted by Regular Expressions (REs) and
equivalent formalisms

Introduction

» Approaches for RE parsing:
» Representation using FSM.
» Derivatives for RE.

» Other approach: use of VM.

» Pioneered by Knuth in the 70’s for top-down parsing of CFG.
» Revived by Cox in the context of REs.

Introduction

» RE VM by Cox.

» RE are high-level programs executed by the VM.

» RE are compiled to a sequence of VM instructions.
» Problems with Cox's VM:

» Poorly specified, no correctness guarantees.

» No disambiguation strategy specified.
» Our work:

> A small-step operational semantics for RE parsing.

» Semantics similar to abstract machines for A-calculus (e.g.
SECD and Krivine's machines).

Our contributions

v

A small-step semantics for RE parsing inspired by Thompson's
NFA construction.

v

Prototype implementation of the semantics in Haskell.

v

Use of property-based testing to verify it against a simple
(and correct) implementation of RE parsing by Fisher et. al.

v

Our semantics outputs bit-codes to represent parse trees for
REs. We use Quickcheck to verify that produced codes
correspond to valid parsing evidence

Background — RE Syntax

» RE Syntax
ex=0|elaleelete]e"
> Haskell Code

data Regex = () | € | Chr Char | Regex @ Regex
| Regex + Regex | Star Regex

Background - RE Semantics

acyr
—— {F Ch
ce g 7 acla
s € [e] s’ e [€]
T {Lef — = {Righ
sE[[e—i—e’]]{et} 5’€[e+e/]]{ ent}
/ *
——— {StarBase} s € [[e]] s € [[e]] {StarRec}
€ € [e] ss’ € [e*]

secle] s elfé€]
ss’ € [e€]

{Cat}

Parse trees for REs

» We interpret RE as types and parse tree as terms.
> Informally:

> leafs: empty string and character.

» concatenation: pair of parse trees.

» choice: just the branch of chosen RE.
» Kleene star: list of parse trees.

» In Haskell:

data Tree = () | Chr Char | Tree ® Tree | InL Tree
| InR Tree | List [Tree]

Parse trees for RE — Example

List

/1IN

InL InR InL

° Chrc °

ATA

Chr a Chr b Chr a Chrb

Figure: Parse tree for RE: (ab + ¢)* and the string w = abcab.

Parse trees typing relation

. Ft:e
F():e FChra:a FinLt:e+ ¢
Ft e Ft:e Ft:e Vitets—ht:e

FInRt' :e+ ¢ Ftet :ee F List ts : e*

Relating parse trees and RE semantics

» Using function flat.

> Property: Let t be a parse tree for a RE e and a string s.
Then, flat(t) = s and s € [e].

flat :: Tree — String

flat () ="

flat (Chr ¢) = [c]

flat (t e t’) = flat t - flat t/

flat (InL t) = flat t

flat (INRt) =flat t

flat (List ts) = concatMap flat ts

Bit-codes for parse trees

> Instead of using parse trees...
» We can use bit-codes in order to build memory efficient
representations of evidence.
» Bit-codes mark...

» which branch of choice was chosen during parsing: 0y, for left ;
1y, for right.

» matchings done by the Kleene star operator: O, marks the
beginning of a new match; 1 finish the list of matchings.

Bit codes as parse trees for RE — Example

List

A

InL InR InL [

Op Ip Op

° Chrc °

ANA

Chr a Chrb Chr a Chrb

Figure: Parse tree for RE: (ab + ¢)* and the string w = abcab.

Relating bit-codes and REs

» Typing relation for bit-codes.

bs> e
[1>e€ [1>a Op:bs>e+é
bs > € bs>e bs' >é
lp:bs>e+ € bs+H bs' > ee [1p] > e*

bst>e bss> e*
Op : bs + bss > e*

Relating bit-codes and parse trees

» Using functions code and decode.

type Code = [Bit]

code :: Regex — Tree — Code
decode :: Regex — Code — Maybe Tree

» Correctness property:

» if - t:ethen (codeet) > e
» decode e (code e t) = Just t

Proposed semantics — (1)

» We use evaluation contexts to represent how to reduce an
input RE.

» Context syntax:
E[l = E[l+e|e+E[] | Elle | eE[] |

» We represent contexts using zippers (data type derivatives)
for RE data type:

data Hole = InChoicel Regex | InChoiceR Regex
| InCatL Regex | InCatR Regex | InStar

Proposed semantics — (II)

» Semantics judgment express transitions between
configurations: ¢ — ¢’

» Parse errors = stuck states.

Proposed semantics — (llI)

» Configurations of the form (d, e, c, b, s) are built from:

» d is a direction, which specifies if the semantics is starting
(denoted by B) or finishing (F) the processing of the current
expression e.

e is the current expression being evaluated;

» cis a context in which e occurs. Contexts are just a list of
Hole type in our implementation.

b is a bit-code for the current parsing result, in reverse order.
s is the input string currently being processed.

v

v

v

» Acceptance configurations: (F,e,[], b, €)

Proposed semantics — (llI)

» Rule for Eps:

E
(B,e,c,b,s) — (F,e,c,b,s) (Ep2)

» Corresponding NFA transition:

-0

Proposed semantics — (IV)

» Rule for Chr:

Chr
(B,a,c,b,a:s) — (F,a,c,b,s) (Chr)

» Corresponding NFA transition:

HQLQ

Proposed semantics — (V)

» Trying the left hand side of e; + e.

c=E[]+¢€:c
(B,e+¢€',c,b,s) — (B,e,c,b,s)

(LeftB)

» Transition in red.

Proposed semantics — (VI)

> Finishing the left hand side of e; + e.

c=E[]+¢€:
(F,e,c,b,s) = (F,e+¢€,c,0p:b,s)

(LeftE)

» Transition in blue.

Test suite

» We use Quickcheck to generate random non-problematic REs.

» Problematic REs have the form e* where ¢ € [e].
» Our semantics can be extended to problematic REs
straightforwardly.
» For a given RE, we have random generators for accepted and
rejected strings.

Properties tested

» Our semantics accepts only and all the strings in the language
described by the input RE.
» Generating random strings that should be accepted.
» Generating random strings that should be rejected.

Properties tested

» Our semantics generates valid parsing evidence:

> the bit-codes can be parsed into a valid parse tree t for the
random produced RE e, i.e. - t: e holds;

» flatt =s and

» codeet =bs.

Code coverage results

» 99% of code coverage by the test suite.

Top Level Definitions

Alternatives

Expressions

Yo

covered / total

covered / total

%o

covered / total

100%

3/3

100%

AT —

100%

74174

100%

474

100%

TR —

97%

163/167

0/0

oo |

0/0

100%

100%

|
2121 ||

100%

173/173

100%

100%|

2575 |

100%

142/142

100%

100%

7474 ||

99%

552/556

Current status

» We have a Coq formalization of a correct interpreter for this
semantics.

» Current work:
» On going formalization of the equivalence between the

proposed semantics and the standard RE semantics.

» Proof that the semantics follows the greedy disambiguation
strategy.

Conclusion

» We developed a small-step semantics for RE parsing inspired
by classical results of automata theory.

» We use property-based testing to check relevant properties of
the semantics, before using a proof-assistant to mechanize the
results.

» Next steps:

» Finish Coq proofs and improve efficiency.

