
Towards certi�ed virtual machine-based regular expression
parsing

�ales Antônio Del�no
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Abstract
Regular expressions (REs) are pervasive in computing. We use
REs in text editors, string search tools (like GNU-Grep) and lexical
analysers generators. Most of these tools rely on converting regular
expressions to its corresponding �nite state machine or use REs
derivatives for directly parse an input string. In this work, we
investigate the suitability of another approach: instead of using
derivatives or generate a �nite state machine for a given RE, we
developed a virtual machine (VM) for parsing regular languages,
in such a way that a RE is merely a program executed by the VM
over the input string. We provided a prototype implementation in
Haskell, tested it using �ickCheck and provided proof sketches
of its correctness with respect to RE standard inductive semantics.
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1 Introduction
We name parsing the process of analyzing if a sequence of symbols
matches a given set of rules. Such rules are usually speci�ed in a
formal notation, like a grammar. If a string can be obtained from
those rules, we have success: we can build some evidence that the
input is in the language described by the underlying formalism.
Otherwise, we have a failure: no such evidence exists.

In this work, we focus on the parsing problem for regular expres-
sions (REs), which are an algebraic and compact way of de�ning
regular languages (RLs), i.e., languages that can be recognized by
(non-)deterministic �nite automata and equivalent formalisms. REs
are widely used in string search tools, lexical analyser generators
and XML schema languages [14]. Since RE parsing is pervasive in
computing, its correctness is crucial and is the subject of study of
several recent research works (e.g [3, 11, 21, 28]).

Approaches for RE parsing can use representations of �nite state
machines (e.g. [11]), derivatives (e.g. [21, 22, 28]) or the so-called
pointed RE’s or its variants [3, 12]. Another approach for parsing is
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based on the so-called parsing machines, which dates back to 70’s
with Knuth’s work on top-down syntax analysis for context-free
languages [18]. Recently, some works have tried to revive the use
of such machines for parsing: Cox [7] de�ned a VM for which a
RE can be seen as “high-level programs” that can be compiled to
a sequence of such VM instructions and Lua library LPEG [17]
de�nes a VM whose instruction set can be used to compile Parser
Expressions Grammars (PEGs) [13]. Such renewed research interest
is motivated by the fact that is possible to include new features by
just adding and implementing new machine instructions.

Since LPEG VM is designed with PEGs in mind, it is not ap-
propriate for RE parsing, since the “star” operator for PEGs has a
greedy semantics which di�ers from the conventional RE semantics
for this operator. Also, Cox’s work on VM-based RE parsing has
problems. First, it is poorly speci�ed: both the VM semantics and
the RE compilation process are described only informally and no
correctness guarantees is even mentioned. Second, it does not pro-
vide an evidence for matching, which could be used to characterize
a disambiguation strategy, like Greedy [14] and POSIX [30]. To the
best of our knowledge, no previous work has formally de�ned a VM
for RE parsing that produces evidence (parse trees) for successul
matches. �e objective of this work is to give a �rst step in �lling
this gap. More speci�cally, we are interested in formally specify,
implement and test the correctness of a VM based small-step seman-
tics for RE parsing which produces bit-codes as a memory e�cient
representation of parse-trees. As pointed by [26], bit-codes are
useful because they are not only smaller than the parse tree, but
also smaller than the string being parsed and they can be combined
with methods for text compression. We leave the task of proving
that our VM follows a speci�c disambiguation strategy to future
work.

Our contributions are:

• We present a small-step semantics for RE inspired by �omp-
son’s NFA1 construction [31]. �e main novelty of this pre-
sentation is the use of data-type derivatives, a well-known
concept in functional programming community, to repre-
sent the context in which the current RE being evaluated
occur. We show informal proofs2 that our semantics is
sound and complete with respect to RE inductive semantics.

• We describe a prototype implementation of our semantics
in Haskell and use �ickCheck [6] to test our semantics
against a simple implementation of RE parsing, presented
in [12], which we prove correct in the Appendix A. Our test
cases cover both accepted and rejected strings for randomly
generated REs.

1Non-deterministic �nite automata.
2By “informal proofs” we mean proofs that are not mechanized in a proof-assistant.
Due to space reasons, proofs of the relevant theorems are omi�ed from this version.
Detailed proofs can be found in the accompanying technical report avaliable on-line [8].
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• We show how our proposed semantics can produce bit
codes that denote parse trees [26] and test that such gen-
erated codes correspond to valid parsing evidence using
�ickCheck.

We are aware that using automated testing is not su�cient to
ensure correctness, but it can expose bugs before using more for-
mal approaches, like formalizing our algorithm in a proof assistant.
Such semantic prototyping step is crucial since it can avoid proof
a�empts that are doomed to fail due to incorrect de�nitions. �e
project’s on-line repository [8] contains the partial Coq formaliza-
tion of our semantics. Currently, we have formalized the semantics
and its interpreter function. �e Coq proof that the proposed small-
step semantics is equivalent to the usual inductive RE semantics is
under development.

�e rest of this paper is organized as follows. Section 2 presents
some background concepts on RE and data type derivatives that
will be used in our semantics. Our operational semantics for RE
parsing and its theoretical properties are described in Section 3.
Our prototype implementation and the �ickCheck test suit used
to validate it are presented in Section 4. Section 5 discuss related
work and Section 6 concludes.

We assume that the reader knows the Haskell programming
language, specially the list monad and how it can be used to model
non-determinism. Good introductions to Haskell are available
elsewhere [19]. All source code produced, including the literate
Haskell source of this article (which can be preprocessed using
lhs2TEX [20]), instructions on how to build it and reproduce the
developed test suit are avaliable on-line [8].

2 Background
2.1 Regular expressions: syntax and semantics
REs are de�ned with respect to a given alphabet. Formally, the
following context-free grammar de�nes RE syntax:

e ::= ∅ | ϵ | a | e e | e + e | e?

Meta-variable e will denote an arbitrary RE and a an arbitrary
alphabet symbol. As usual, all meta-variables can appear primed or
subscripted. In our Haskell implementation, we represent alphabet
symbols using type Char.
data Regex = ∅ | ϵ | Chr Char | Regex • Regex
| Regex + Regex | Star Regex

Constructors ∅ and ϵ denote respectively the empty set (∅) and
the empty string (ϵ) REs. Alphabet symbols are constructed by using
the Chr constructor. Bigger REs are built using concatenation ( • ),
union ( + ) and Kleene star (Star).

Following common practice [21, 27, 28], we adopt an inductive
characterization of RE membership semantics. We let judgment
s ∈ JeK denote that string s is in the language denoted by RE e .

Rule Eps states that the empty string (denoted by the ϵ) is in the
language of RE ϵ .

For any single character a, the singleton string a is in the RL
for Chr a. Given membership proofs for REs e and e′, s ∈ JeK and
s ′ ∈ Je ′K, ruleCat can be used to build a proof for the concatenation
of these REs. Rule Le� (Right) creates a membership proof for e +e ′
from a proof for e (e ′). Semantics for Kleene star is built using the
following well known equivalence of REs: e? = ϵ + e e?.

We say that a RE e is problematic if e = e ′? and ϵ ∈ Je ′K [14].
In this work, we limit our a�ention to non-problematic RE’s. Our

ϵ ∈ JϵK
{Eps} a ∈ Σ

a ∈ JaK
{Chr }

s ∈ JeK
s ∈ Je + e ′K

{Le�}
s ′ ∈ Je ′K

s ′ ∈ Je + e ′K
{Right}

ϵ ∈ Je?K
{StarBase}

s ∈ JeK s ′ ∈ Je?K
ss ′ ∈ Je?K

{StarRec}

s ∈ JeK s ′ ∈ Je ′K
ss ′ ∈ Jee ′K

{Cat}

Figure 1. RE inductive semantics.

results can be extended to problematic REs without providing any
new insight [14, 26].

2.2 RE parsing and bit-coded parse trees
RE parsing. One way to represent parsing evidence is to build a
tree that denotes a RE membership proof. Following [14, 26], we
let parse trees be terms whose type is underlying RE.

data Tree = () | Chr Char | Tree • Tree | InL Tree
| InR Tree | List [Tree]

Constructor () denotes a tree for RE ϵ andChr is a tree for a single
character RE. Trees for concatenations are pairs, constructors InL
and InR denotes trees for the le� and right component of a choice
operator. Finally, a tree for RE e? is a list of trees for RE e . �is
informal relation is speci�ed by the following inductive relation
between parse trees and RE. We let ` t : e denote that t is a parse
tree for RE e .

` () : ϵ ` Chr a : a
` t : e

` InL t : e + e ′

` t′ : e ′
` InR t′ : e + e ′

` t : e ` t′ : e ′
` t • t′ : ee ′

∀t.t ∈ ts→` t : e
` List ts : e?

Figure 2. Parse tree typing relation.

�e relation between RE semantics and its parse trees are for-
malized using the function flat, which builds the string stored in a
given parse tree. �e Haskell implementation of flat is immediate.

flat :: Tree→ String
flat () = ""

flat (Chr c) = [c]
flat (t • t′) = flat t ++ flat t′

flat (InL t) = flat t
flat (InR t) = flat t
flat (List ts) = concatMap flat ts

Example 1. Consider the RE ((ab)+c)∗ and the stringabcab, which
is accepted by that RE. Here is shown the string’s corresponding
parse tree:
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[ ]

inl

〈, 〉

a b

inr

c

inl

〈, 〉

a b

�e next theorem, which relates parse tress and RE semantics,
can be proved by an easy induction on the RE semantics derivation.

�eorem 1. For all s and e , if s ∈ JeK then exists a tree t such that
flat t = s and ` t : e .

Proof. We proceed by induction on the derivation of s ∈ JeK.
1. Case rule (Eps): �en, s = ϵ . Let t = () and the conclusion

follows by the de�nition of flat and rule T 1.
2. Case rule (Chr ): �en, s = a, a ∈ Σ. Let t = Chr a and the

conclusion follows by the de�nition of flat and rule T 2.
3. Case rule (Le f t): �en, e = e1 + e2 and s ∈ Je1K. By the

induction hypothesis, we have a tree tl such that flat tl = s
and ` tl : e1. Let t = InL tl. Conclusion follows from rule
T 3 and the de�nition of flat.

4. Case rule (Riдht): �en, e = e1 + e2 and s ∈ Je2K. By the
induction hypothesis, we have a tree tr such that flat tr = s
and ` tr : e2. Let t = InR tr. Conclusion follows from rule
T 4 and the de�nition of flat.

5. Case rule (Cat): �en, e = e1 e2, s = s1 s2, s1 ∈ Je1K and
s2 ∈ Je2K. By the induction hypothesis we have trees t1 and
t2 such that flat t1 =s1, ` t1 : e1, flat t2 =s2 and ` t2 : e2. Let
t = t1 • t2. Conclusion follows by ruleT 5 and the de�nition
of flat.

6. Case rule (StarBase): �en, e = e?1 , s = ϵ . Let t = List [ ].
Conclusion follows by rule T 6 and the de�nition of flat.

7. Case rule (StarRec): �en, e = e?1 , s = s1 s2, s1 ∈ Je2K and
s2 ∈ Je2K. By induction hypothesis, we have trees t1 and t2
such that flat t1 = s1, ` t1 : e1, flat t2 = s2, ` t2 : e?1 and
t2 = List ts, for some list ts. Let t = List (t1 : ts). Conclusion
follows from the de�nition of flat and rule T 6.

�

Bit-coded parse trees. Nielsen et. al. [26] proposed the use of
bit-marks to register which branch was chosen in a parse tree
for union operator, +, and to delimit di�erent matches done by
Kleene star expression. Evidently, not all bit sequences correspond
to valid parse trees. Ribeiro et. al. [28] showed an inductively
de�ned relation between valid bit-codes and RE, accordingly to the
encoding proposed by [26]. We let the judgement bs B e denote
that the sequence of bits bs corresponds to a parse-tree for RE e .

�e empty string and single character RE are both represented
by empty bit lists. Codes for RE ee ′ are built by concatenating codes
of e and e ′. In RE union operator, +, the bit 0b marks that the parse
tree for e + e ′ is built from e’s and bit 1b that it is built from e ′’s.
For the Kleene star, we use bit 1b to denote the parse tree for the

[ ] B ϵ [ ] B a
bs B e

0b : bs B e + e ′

bs B e ′

1b : bs B e + e ′
bs B e bs′ B e ′

bs ++ bs′ B ee ′ [1b ] B e?

bs B e bss B e?

0b : bs ++ bss B e?

Figure 3. Typing relation for bit-codes.

empty string and bit 0b to begin matchings of e in a parse tree for
e?.

�e relation between a bit-code and its underlying parse tree
can be de�ned using functions code and decode. Type Code used
in code and decode de�nition is just a synonym for [Bit]. Function
code has an immediate de�nition by recursion on the structure of
parse tree.

code :: Tree→ Regex→ Code
code (InL t) (e + ) = 0b : code t e
code (InR t′) ( + e′) = 1b : code t′ e′
code (List ts) (Star e) = codeList ts e
code (t • t′) (e • e′) = code t e ++ code t′ e′

code = [ ]

codeList :: [Tree] → Regex→ Code
codeList ts e = foldr (λt ac→ 0b : code t e ++ ac) [1b ] ts

To de�ne function decode, we need to keep track of the remain-
ing bits to be processed to �nish tree construction. �is task is done
by an auxiliar de�nition, dec.

dec :: Regex→ Code→ Maybe (Tree,Code)
dec ϵ bs = return ((), bs)
dec (Chr c) bs = return (Chr c, bs)
dec (e + ) (0b : bs) = do

(t, bs1) ← dec e bs
return (InL t, bs1)

dec ( + e′) (1b : bs) = do

(t′, bs1) ← dec e′ bs
return (InR t′, bs1)

dec (e • e′) bs = do

(t, bs1) ← dec e bs
(t′, bs′) ← dec e′ bs1
return (t • t′, bs′)

dec (Star e) bs = do

(ts, bs′) ← decodeList e bs
return (List ts, bs′)

dec = fail "invalid bit code"

For single character and empty string REs, its decoding consists in
just building the tree and leaving the input bit-coded untouched.
We build a le� tree (using InL) for e + e ′ if the code starts with
bit 0b. A parse tree using constructor InR is built whenever we
�nd bit 1b for a union RE. Building a tree for concatenation is
done by sequencing the processing of codes for le� component of
concatenation and starting the processing of right component with
the remaining bits from the processing of the le� RE.
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decodeList :: Regex→ Code→ Maybe ([Tree],Code)
decodeList [ ] = fail "fail decodeList"

decodeList (1b : bs) = return ([ ], bs)
decodeList e (0b : bs) = do

(t, be) ← dec e bs
(ts, bs′) ← decodeList e be
return (t : ts, bs′)

Function decodeList generate a list of parse trees consuming the
bit 0b used as a separator, and bit 1b which �nish the list of parsing
results for star operator.

Finally, using dec, the de�nition of decode is immediate.

decode :: Regex→ Code→ Maybe Tree
decode e bs
= case dec e bs of

Just (t, [ ]) → Just t
→ Nothing

Example 2. We present again the same RE and string we showed
in Example 1, denoted by ((ab) + c)∗ and abcab, respectively. Note
that the parse tree is also the same. However, this time it contains
its bit codes, which are 0001001. �e �rst, third and ��h zeros
in this sequence are separators and do not appear on the tree, as
well as the last one digit, which de�nes the end of the bit codes.
Remaining three digits (two zeros and one one) appear in each inl
or inr on the tree.

[ ]

0:inl

〈, 〉

a b

1:inr

c

0:inl

〈, 〉

a b

�e relation between codes and its correspondent parse trees
are speci�ed by the next theorem.

�eorem 2. Let t be a parse tree such that ` t : e , for some RE e.
�en (code t e) B e and decode e (code t e) = Just t.

Proof. We proceed by induction on the derivation of ` t : e .
1. Case rule T 1: �en, e = ϵ and t = (). Conclusion follows by

rule B1 and the de�nition of functions code and decode.
2. Case rule T2: �en, e = a and t = Chr a. Conclusion

follows by rule B2 and the de�nition of functions code and
decode.

3. Case rule T3: �en, e = e1 + e2 and t = InL tl. By the
induction hypothesis, we have that code tl e1 = bs, bs B e1
and decode e1 bs = Just tl. From the de�nition of code, we
have that code (InL tl) (e1+e2) = 0b :bs and by rule B3, we
have that 0b : bsB(e1+e2). �e conclusion follows from the
de�nition of code, decode and the fact that decode e1 bs =
Just tl.

4. Case rule T4: �en, e = e1 + e2 and t = InR tr. By the
induction hypothesis, we have that code tr e2 = bs, bs B e2
and decode e2 bs = Just tr. From the de�nition of code,
we have that code (InR tl) (e1 + e2) = 1b : bs and by
rule B4, we have that 1b : bs B (e1 + e2). �e conclusion
follows from the de�nition of code, decode and the fact that
decode e2 bs = Just tr.

5. Case rule T5: �en, e = e1 e2 and t = tl • tr. Conclusion
follows from the induction hypothesis on tl and tr.

6. Case rule T6: �en, e = e?1 and t = List ts, where ∀t ′.t ′ ∈
ts →` t ′ : e1. �e desired conclusion follows from the
induction hypothesis on each tree t ′ ∈ ts .

�

Next, we review �ompson NFA construction which is similar
to the proposed semantics for RE parsing developed in Section 3.

2.3 �ompson NFA construction
�e �ompson NFA construction is a classical algorithm for build-
ing an equivalent NFA with ϵ-transitions by induction over the
structure of an input RE. We follow a presentation given in [2]
where N (e) denotes the NFA equivalent to RE e . �e construction
proceeds as follows. If e = ϵ , we can build the following NFA
equivalent to e .

ϵ

If e = a, for a ∈ Σ, we can make a NFA with a single transition
consuming a:

a

When e = e1 + e2, we let N (e1) be the NFA for e1 and N (e2) the
NFA for e2. �e NFA for e1 + e2 is built by adding a new initial and
accepting state which can be combined with N (e1) and N (e2) using
ϵ-transitions as shown in the next picture.

N (e1)

N (e2)

ϵ

ϵ

ϵ

ϵ

�e NFA for the concatenation e = e1e2 is built from the NFAs N (e1)
and N (e2). �e accepting state of N (e1e2)will be the accepting state
from N (e2) and the starting state of N (e1) will be the initial state
of N (e1).

N (e1) N (e2)
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Finally, for the Kleene star operator, we built a NFA for the RE e , add
a new starting and accepting states and the necessary ϵ transitions,
as shown below.

N (e1)
ϵ

ϵ

ϵ

ϵ

Example 3. In order to show a step-by-step automata construction
following �ompson’s algorithm, we take as example the RE ((ab)+
c)∗ over the alphabet Σ = {a,b, c}.

�e �rst step is to construct an automata (S1) that accepts the
symbol a.

1S1 : 2a

�en, we construct another automata (S2) that accepts the sym-
bol b:

3S2 : 4b

�e concatenation ab is accepted by automata S3:

1S3 : 2 4a b

Now we build automata S4, which recognizes the symbol c:

5S4 : 6c

�e automata S5 accepts the RE (ab) + c:

7S5 :

1

5

2

4

8

6

ϵ

ϵ

a b ϵ

c

ϵ

Finally, we have the NFA S6, that accepts ((ab) + c)∗:

9S6 : 7

1

5

2

4

8

6

10

ϵ

ϵ

a b ϵ

c

ϵ

ϵ

ϵ

ϵ ϵ

Originally, �ompson formulate its construction as a IBM 7094
program [31]. Next we reformulate it as a small-step operational
semantics using contexts, modeled as data-type derivatives for RE,
which is the subject of the next section.

2.4 Data-type derivatives
�e usage of evaluation contexts is standard in reduction seman-
tics [10]. Contexts for evaluating a RE during the parse of a string
s can be de�ned by the following context-free syntax:

E[ ] → E[ ] + e | e + E[ ] | E[ ] e | e E[ ] | ?

�e semantics of a E[ ] context is a RE with a hole that needs to
be “�lled” to form a RE. We have two cases for union and concatena-
tion denoting that the hole could be the le� or the right component
of such operators. Since the Kleene star has only a recursive occur-
rence, it is denoted just as a “mark” in context syntax.

Having de�ned our semantics (Figure 4), we have noticed that
our RE context syntax is exactly the data type for one-hole contexts,
known as derivative of an algebraic data type. Derivatives where
introduced by McBride and its coworkers [23] as a generalization
of Huet’s zippers for a large class of algebraic data types [1]. RE
contexts are implemented by the following Haskell data-type:

data Hole = InChoiceL Regex | InChoiceR Regex
| InCatL Regex | InCatR Regex | InStar

Constructor InChoiceL store the right component of a union RE
(similarly for InChoiceR). We need to store contexts for union
because such information is used to allow backtracking in case
of failure. Constructors InCatL and InCatR store the right (le�)
component of a concatenation and they are used to store the next
subexpresssions that need to be evaluated during input string pars-
ing. Finally, InStar marks that we are currently processing an
expression with a Kleene star operator.

3 Proposed semantics
In this section we present the de�nition of an operational semantics
for RE parsing which is equivalent to executing the �ompson’s
construction NFA over the input string. Observe that the induc-
tive semantics for RE (Figure 1) can be understood as a big-step
operational semantics for RE, since it ignores many details on how
should we proceed to match an input [27].

�e semantics is de�ned as a binary relation between con�gura-
tions, which are 5-uples 〈d, e, c,b, s〉 where:
• d is a direction, which speci�es if the semantics is starting

(denoted by B) or �nishing (F ) the processing of the current
expression e .

• e is the current expression being evaluated;
• c is a context in which e occurs. Contexts are just a list of

Hole type in our implementation.
• b is a bit-code for the current parsing result, in reverse order.
• s is the input string currently being processed.

Notation 〈d, e, c,b, s〉 → 〈d ′, e ′, c ′,b ′, s ′〉 denotes that from con-
�guration 〈d, e, c,b, s〉 we can give a step leading to a new state
〈d ′, e ′, c ′,b ′, s ′〉 using the rules speci�ed in Figure 4.

�e rules of the semantics can be divided in two groups: starting
rules and �nishing rules. Starting rules deal with con�gurations
with a begin (B) direction and denote that we are beginning the pars-
ing for its RE e . Finishing rules use the context to decide how the
parsing for some expression should end. Intuitively, starting rules
correspond to transitions entering a sub-automata of �ompson
NFA and �nishing rules to transitions exiting a sub-automata.

�e meaning of each starting rule is as follows. Rule {Eps}
speci�es that we can mark a state as �nished if it consists of a
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〈B, ϵ, c,b, s〉 → 〈F , ϵ, c,b, s〉
(Eps)

〈B,a, c,b,a : s〉 → 〈F ,a, c,b, s〉
(Chr )

b ′ = 0b : b
c ′ = E[ ] + e ′ : c

〈B, e + e ′, c,b, s〉 → 〈B, e, c ′,b ′, s〉
(Lef tB )

b ′ = 1b : b
c ′ = e + E[ ] : c

〈B, e + e ′, c,b, s〉 → 〈B, e ′, c ′,b ′, s〉
(RiдhtB )

c ′ = E[ ]e ′ : c
〈B, ee ′, c,b, s〉 → 〈B, e, c ′,b, s〉

(CatB )
〈B, e?, c,b, s〉 → 〈B, e,? : c, 0b : b, s〉

(Star1)

〈B, e?, c,b, s〉 → 〈F , e?, c, 1b : b, s〉
(Star2)

c ′ = eE[ ] : c
〈F , e,E[ ]e ′ : c,b, s〉 → 〈B, e ′, c ′,b, s〉

(CatEL )
〈F , e ′, eE[ ] : c,b, s〉 → 〈F , ee ′, c,b, s〉

(CatER )

c = E[ ] + e ′ : c ′

〈F , e, c,b, s〉 → 〈F , e + e ′, c ′, 0b : b, s〉
(Lef tE )

c = e + E[ ] : c ′

〈F , e, c,b, s〉 → 〈F , e + e ′, c ′, 1b : b, s〉
(RiдhtE )

〈F , e,? : c,b, s〉 → 〈B, e,? : c, 0b : b, s〉
(StarE1)

〈F , e,? : c,b, s〉 → 〈F , e?, c, 1b : b, s〉
(StarE2)

Figure 4. Small-step semantics for RE parsing.

starting con�guration with RE ϵ . We can �nish any con�guration
for RE Chr a if it is starting with current string with a leading
a. Whenever we have a starting con�guration with a choice RE,
e1 + e2, we can non-deterministically choose if input string s can
be processed by e1 (rule Le f tB ) or e2 (rule RiдhtB ). For beginning
con�gurations with concatenation, we parse input string using each
of its components sequentially. Finally, for starting con�gurations
with a Kleene star operator, e?, we can either start the processing
of e or �nish the processing for e?. In all recursive cases for RE, we
insert context information in the third component of the resulting
con�guration in order to decide how the machine should step a�er
�nishing the execution of the RE currently on focus.

Rule (CatEL) applies to any con�guration which is �nishing with
a le� concatenation context (E[ ]e ′). In such situation, rule speci�es
that a computation should continue with e ′ and push the context
e E[ ]. We end the computation for a concatenation, whenever
we �nd a context e E[ ] in the context component (rule (CatER )).
Finishing a computation for choice consists in just popping its
correspondent context, as done by rules (Le f tE ) and (RiдhtE ). For
the Kleene star operator, we can either �nish the computation by
popping the contexts and adding the corresponding 1b to end its
matching list or restart with RE e for another matching over the
input string.

�e proposed semantics is inspired by �ompson’s NFA con-
struction (as shown in Section 2.3). First, the rule Eps can be under-
stood as executing the transition highlighted in red in the following
schematic automata.

ϵ

�eChr rule corresponds to the following transition (represented
in red) in the next automata.

a

RuleCatB corresponds to start the processing of the input string
in the automata N (e1); while rule CatEL deals with exiting the
automata N (e1) followed by processing the remaining string in

N (e2). RuleCatER deals with ending the processing in the automata
below.

N (e1) N (e2)

If we consider a RE e = e1 + e2 and lets N (e1) and N (e2) be
two NFAs for e1 and e2, respectively, we have the following cor-
respondence between transtions and semantics rules in the next
NFA:

• Red transition for rule Le f tB ;
• Green for RiдhtB ;
• Blue for Le f tE ; and
• Black for RiдhtE .

N (e1)

N (e2)

ϵ

ϵ

ϵ

ϵ

Finally, we present Kleene star rules in next automata according
to �ompson’s NFA construction. �e colors are red for Star1 rule,
green for Star2, blue for StarE1 and black for StarE2.
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N (e1)
ϵ

ϵ

ϵ

ϵ

�e starting state of the semantics is given by the con�guration
〈B, e, [], [], s〉 and accepting con�gurations are 〈F , e ′, [],bs, []〉, for
some RE e ′ and code bs . Following common practice, we let→?

denote the re�exive, transitive closure of the small-step semantics
de�ned in Figure 4. We say that a string s is accepted by RE e if
〈B, e, [], [], s〉 →? 〈F , e ′, [],bs, []〉. �e next theorem asserts that
our semantics is sound and complete with respect to RE inductive
semantics (Figure 1).

�eorem 3. For all strings s and non-problematic REs e , s ∈ JeK if,
and only if, 〈B, e, [], [], s〉 →? 〈F , e ′, [],b, []〉 and 〈F , e ′, [],b, []〉 is
an accepting con�guration.

Proof. (→): We proceed by induction on the derivation of s ∈ JeK.

1. Case rule Eps: �en, e = ϵ , s = ϵ and the conclusion is
immediate.

2. Case ruleChr : �en, e = a, s = a and the conclusion follows.
3. Case rule Le f t : �en, e = e1+e2 and s ∈ Je1K. By the induc-

tion hypothesis, we have 〈B, e1, ctx ,b, s〉 →? 〈E, e ′, ctx ′,b ′, []〉
and the conclusion follows.

4. Case rule Riдht : �en, e = e1+e2 and s ∈ Je2K. By the induc-
tion hypothesis, we have 〈B, e2, ctx ,b, s〉 →? 〈E, e ′, ctx ′,b ′, []〉
and the conclusion follows.

5. Case rule Cat : �en, e = e1 e2, s1 ∈ Je1K, s2 ∈ Je2K and
s = s1 s2. By the induction hypothesis on s1 ∈ Je1K we have
that 〈B, e1, ctx ,b, s〉 →? 〈E, e ′,E[ ] e2 : ctx ,b ′, []〉 and by
induction hypothesis on s2 ∈ Je2K, we have 〈B, e2, e1 E[ ] :
ctx ,b, s〉 →? 〈E, e ′, ctx ,b ′, []〉 and the conclusion follows.

6. Case rule StarBase : �en, e = e?1 and s = ϵ . �e conclusion
is immediate.

7. Case rule StarRec : �en, e = e?1 , s = s1s2, s1 ∈ Je1K and s2 ∈
Je?1 K. By the induction hypothesis on s1 ∈ Je1K, we have
〈B, e1,? : ctx ,b, s1〉 →? 〈E, e ′,? : ctx ,b ′, []〉, the induction
hypothesis on s2 ∈ Je?1 K give us 〈B, e?1 ,? : ctx ,b, s2〉 →?

〈E, e ′,? : ctx ,b ′, []〉 and conclusion follows.

(←): We proceed by induction on e .

1. Case e = ϵ . �en, we have 〈B, ϵ, ctx ,b, s〉 →? 〈E, e ′, ctx ′,b ′, []〉
and s = ϵ . Conclusion follows by rule Eps .

2. Case e = a. �en 〈B,a, ctx ,b, s〉 →? 〈E, e ′, ctx ′,b ′, []〉 and
s = a. Conclusion follows by rule Chr .

3. Case e = e1 + e2. Now, we consider the following cases.
a. s is accepted by e1. �en, we have the following deriva-

tion:

〈B, e1+e2, ctx ,b, s〉 → 〈B, e1,E[ ]+e2 : ctx ,b, s〉 →? 〈E, e ′, ctx ′,b ′, []〉

By induction hypothesis on e1 and the derivation 〈B, e1,E[ ]+
e2 : ctx ,b, s〉 →? 〈E, e ′, ctx ′,b ′, []〉 we have s ∈ Je1K
and the conclusion follows by rule Le f t .

b. s is accepted by e2. �en, we have the following deriva-
tion:

〈B, e2, ctx ,b, s〉 → 〈B, e1, e1 +E[ ] : ctx ,b, s〉 →? 〈E, e ′, ctx ′,b ′, []〉

By induction hypothesis on e2 and the derivation 〈B, e1, e1+
E[ ] : ctx ,b, s〉 →? 〈E, e ′, ctx ′,b ′, []〉, we have s ∈ Je2K
and conclusion follows by rule Riдht .

�

4 Implementation details
In order to implement the small-step semantics of Figure 4, we
need to represent con�gurations. We use type Conf to denote
con�gurations and directions are represented by type Dir, where
Begin denote the starting and End the �nishing direction.

data Dir = Begin | End
type Conf = (Dir,Regex, [Hole],Code, String)

Function finish tests if a con�guration is an accepting one.

finish :: Conf → Bool
finish (End, , [ ], , [ ]) = True
finish = False

�e small-step semantics is implemented by function next, which
returns a list of con�gurations that can be reached from a given
input con�guration. We will begin by explaining the equations that
code the set of starting rules from the small-step semantics. �e
�rst alternative

next :: Conf → [Conf ]
next (Begin, ϵ, ctx, bs, s) = [(End, ϵ, ctx, bs, s)]

implements rule (Eps), which �nishes a starting Conf with an ϵ .
Rule (Chr ) is implemented by the following equation

next (Begin,Chr c, ctx, bs, a : s)
| a ≡ c = [(End,Chr c, ctx, bs, s)]
| otherwise = [ ]

which consumes input character a if it matches RE Chr c, otherwise
it fails by returning an empty list. For a choice expression, we
can use two distinct rules: one for parsing the input using its le�
component and another rule for the right. Since both union and
Kleene star introduce non-determinism in RE parsing, we can easily
model this using the list monad, by return a list of possible resulting
con�gurations.

next (Begin, e + e′, ctx, bs, s)
= [(Begin, e, InChoiceL e′ : ctx, 0b : bs, s)
, (Begin, e′, InChoiceR e : ctx, 1b : bs, s)]

Concatenation just sequences the computation of each of its com-
posing RE.

next (Begin, e • e′, ctx, bs, s)
= [(Begin, e, InCatL e′ : ctx, bs, s)]

For a starting con�guration with Kleene star operator, Star e, we
can proceed in two ways: by beginning the parsing of RE e or by
�nishing the computation for Star e over the input.

next (Begin, Star e, ctx, bs, s)
= [(Begin, e, InStar : ctx, 0b : bs, s)
, (End, (Star e), ctx, 1b : bs, s)]
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�e remaining equations of next deal with operational semantics
�nishing rules. �e equation below implements rule (CatEL)which
speci�es that an ended computation for the le� component of a
concatenation should continue with its right component.

next (End, e, InCatL e′ : ctx, bs, s)
= [(Begin, e′, InCatR e : ctx, bs, s)]

Whenever we are in a �nishing con�guration with a right concate-
nation context, (InCatR e), we end the parsing of the input for the
whole concatenation RE.

next (End, e′, InCatR e : ctx, bs, s)
= [(End, e • e′, ctx, bs, s)]

Next equations implement the rules that �nish con�gurations for
the union, by commi�ing to its �rst successful branch.

next (End, e, InChoiceL e′ : ctx, bs, s)
= [(End, e + e′, ctx, 0b : bs, s)]

next (End, e′, InChoiceR e : ctx, bs, s)
= [(End, e + e′, ctx, 1b : bs, s)]

Equations for Kleene star implement rules (StarE1) and (StarE2)
which allows ending or add one more match for an RE e .

next (End, e, InStar : ctx, bs, s)
= [(Begin, e, InStar : ctx, 0b : bs, s)
, (End, (Star e), ctx, 1b : bs, s)]

Finally, stuck states on the semantics are properly handled by the
following equation which turns them all into a failure (empty list).

next = [ ]

�e re�exive-transitive closure of the semantics is implemented
by function steps, which computes the trace of all states needed to
determine if a string can be parsed by the RE e .

steps :: [Conf ] → [Conf ]
steps [ ] = [ ]
steps cs = steps [c′ | c← cs, c′ ← next c] ++ cs

Finally, the function for parsing a string using an input RE is im-
plemented as follow s:

vmAccept :: String→ Regex→ (Bool,Code)
vmAccept s e = let r = [c | c← steps initcfg, finish c]

in if null r then (False, [ ]) else (True, bitcode (head r))
where

initcfg = [(Begin, e, [ ], [ ], s)]
bitcode ( , , , bs, ) = reverse bs

Function vmAccept returns a pair formed by a boolean and the
bit-code produced during the parsing of an input string and RE.
Observe that we need to reverse the bit-codes, since they are built
in reverse order.

4.1 Test suite
An overview of �ickCheck. Our tests are implemented using
�ickCheck [6], a library that allows the testing of properties
expressed as Haskell functions. Such veri�cation is done by gener-
ating random values of the desired type, instantiating the relevant
property with them, and checking it directly by evaluating it to a
boolean. �is process continues until a counterexample is found
or a speci�ed number of cases are tested with success. �e library

provides generators for several standard library data types and
combinators to build new generators for user-de�ned types.

As an example of a custom generator, consider the task of gen-
erating a random alpha-numeric character. To implement such
generator, genChar, we use �ickCheck function suchThat which
generates a random value which satis�es a predicate passed as argu-
ment (in example, we use isAlphaNum, which is true whenever we
pass an alpha-numeric character to it), using an random generator
taken as input.

genChar :: Gen Char
genChar = suchThat (arbitrary :: Gen Char) isAlphaNum

In its simplest form, a property is a boolean function. As an
example, the following function states that reversing a list twice
produces the same input list.

reverseInv : [Int] → Bool
reverseInv xs = reverse (reverse xs) ≡ xs

We can understand this property as been implicitly quanti�ed
universally over the argument xs. Using the function quickCheck
we can test this property over randomly generated lists:
quickCheck reverseInv
+++ OK, passed 100 tests.

Test execution is aborted whenever a counter example is found for
the tested property. For example, consider the following wrong
property about the list reverse algorithm:

wrong :: [Int] → Bool
wrong xs = reverse (reverse xs) ≡ reverse xs

When we execute such property, a counter-example is found and
printed as a result of the test.
quickCheck wrong
*** Failed! Falsifiable (6 tests and 4 shrinks).
[0,1]

Test case generators. In order to test the correctness of our se-
mantics, we needed to build generators for REs and for strings.
We develop functions to randomly generate strings accepted and
rejected for a RE, using the �ickCheck library.

Generation of random RE is done by function sizedRegex, which
takes a depth limit to restrict the size of the generated RE. Whenever
the input depth limit is less or equal to 1, we can only build a ϵ or a
single character RE. �e de�nition of sizedRegex uses �ickCheck
function frequency, which receives a list of pairs formed by a weight
and a random generator and produces, as result, a generator which
uses such frequency distribution. In sizedRegex implementation we
give a higher weight to generate characters and equal distributions
to build concatenation, union or star.

sizedRegex :: Int→ Gen Regex
sizedRegex n
| n 6 1 = frequency [(10, return ϵ), (90,Chr 〈$〉 genChar)]
| otherwise = frequency [(10, return ϵ), (30,Chr 〈$〉 genChar)
, (20, ( • ) 〈$〉 sizedRegex n2 〈?〉 sizedRegex n2)
, (20, ( + ) 〈$〉 sizedRegex n2 〈?〉 sizedRegex n2)
, (20, Star 〈$〉 suchThat (sizedRegex n2) (not ◦ nullable))]
where n2 = div n 2
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For simplicity and brevity, we only generate REs that do not
contain sub-REs of the form e?, where e is nullable3. All results can
be extended to problematic4 REs in the style of Frisch et. al [14].

Given an RE e , we can generate a random string s such that
s ∈ JeK using the next de�nition. We generate strings by choosing
randomly between branches of a union or by repeating n times a
string s which is accepted by e , whenever we have e? (function
randomMatches).

randomMatch :: Regex→ Gen String
randomMatch ϵ = return ""

randomMatch (Chr c) = return [c]
randomMatch (e • e′) = li�M2 (++) (randomMatch e)
(randomMatch e′)

randomMatch (e + e′) = oneof [randomMatch e, randomMatch e′ ]
randomMatch (Star e) = do

n← choose (0, 3) :: Gen Int
randomMatches n e

randomMatches :: Int→ Regex→ Gen String
randomMatches m e′

| m 6 0 = return [ ]
| otherwise = li�M2 (++) (randomMatch e′)
(randomMatches (m − 1) e′)

�e algorithm for generating random strings that aren’t accepted
by a RE is similarly de�ned.

Properties considered. In order to verify if the de�ned semantics
is correct, we need to check the following properties:

1. Our semantics accepts only and all the strings in the lan-
guage described by the input RE: we test this property by
generating random strings that should be accepted and
strings that must be rejected by a random RE.

2. Our semantics generates valid parsing evidence: the bit-
codes produced as result have the following properties: 1)
the bit-codes can be parsed into a valid parse tree t for the
random produced RE e , i.e. ` t : e holds ; 2) flat t = s and 3)
code e t = bs.

Note that we need a correct implementation of RE parsing to verify
the �rst property. We use the accept function from [12] for this and
compare its result with vmAccept’s. �e second property demands
that the bit-codes produced can be decoded into valid parsing evi-
dence. �e veri�cation of produced bit-codes is done by function
validCode shown below.

validCode :: String→ Code→ Regex→ Bool
validCode [ ] = True
validCode s bs e = case decode e bs of

Just t→ and [tc t e, flat t ≡ s, code t e ≡ bs]
→ False

Finally, function vmCorrect combines both properties mentioned
above into a function that is called to test the semantics implemen-
tation.

vmCorrect :: Regex→ String→ Property
vmCorrect e s

3A RE e is nullable if ϵ ∈ JeK.
4We say that a RE e is problematic if there’s e ′ such that e = e ′? and ϵ ∈ Je ′K.

= let (r, bs) = vmAccept s e
in (accept e s≡ r) ∧ validCode s bs e

In addition to coding / decoding of parse trees, we need a function
which checks if a tree is indeed a parsing evidence for some RE
e . Function tc takes, as arguments, a parse tree t and a RE e and
veri�es if t is an evidence for e .
tc :: Tree→ Regex→ Bool
tc () ϵ = True
tc (Chr c) (Chr c′) = c ≡ c′

tc (t • t′) (e • e′) = tc t e ∧ tc t′ e′

tc (InL t) (e + ) = tc t e
tc (InR t′) ( + e′) = tc t′ e′

tc (List ts) (Star e) = all (flip tc e) ts

Function tc is a implementation of parsing tree typing relation,
as speci�ed by the following result.

�eorem 4. For all tree t and RE e , ` t : e if, and only if, tc t e =
True.

Proof. (→): We proceed by induction on the derivation of ` t : e .
1. Case ruleT 1: �en, e = ϵ and t = () and conclusion follows.
2. Case rule T2: �en, e = a and t = Chr a and conclusion

follows.
3. Case ruleT 3: �en, e = e1+e2 and t = InL tl, where ` tl : e1.

By induction hypothesis, we have that tc tl e1 = True and
conclusion follows.

4. Case ruleT 4: �en, e = e1+e2 and t = InR tr, where ` tr : e2.
By induction hypothesis, we have that tc tr e2 = True and
conclusion follows.

5. Case rule T5: �en, e = e1 e2 and t = tl • tr. Conclusion is
immediate from the induction hypothesis.

6. Case rule T6: �en, e = e?1 and t = List ts and conclusion
follows from the induction hypothesis on each element of
ts.

(←): We proceed by induction on e .
1. Case e = ϵ : �en, t = () and the conclusions follows by rule

T 1.
2. Case e = a: �en, t = Chr a and the conclusions follows by

rule T 2.
3. Case e = e1 + e2: Now, we consider the following subcases:

a. Case t = InL tl: By induction hypothesis, we have that
tc tl e1 = True and conclusion follows.

b. Case t = InR tr: By induction hypothesis, we have that
tc tr e2 = True and conclusion follows.

4. Case e = e1 e2: �en, t = tl • tr and conclusion follows by
the induction hypothesis and the rule T 5.

5. Case e = e?1 : �en, t = List ts and conclusion follows by
induction hypothesis on each element of ts and rule T 6.

�

Code coverage results. A�er running thousands of well-succeeded
tests, we gain a high degree of con�dence in the correctness of our
semantics, however, it is important to measure how much of our
code is covered by the test suite. We use the Haskell Program
Coverage tool (HPC) [15] to generate statistics about the execution
of our tests. Code coverage results are presented in Figure 5.

Our test suite give us almost 100% of code coverage, which pro-
vides a strong evidence that our semantics is indeed correct. All top
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Figure 5. Code coverage results

level de�nitions and function alternatives are actually executed by
the test cases and just two expressions are marked as non-executed
by HPC.

4.2 Coq formalization
In this section we brie�y present the status of our Coq formalization.
First, we give a suscint introduction to Coq focusing on features
used in our formalization and next we describe the implementation
of our veri�ed interpreter for the proposed semantics (Figure 4).

4.2.1 A tour of Coq proof assistant
Coq is a proof assistant based on the calculus of inductive con-
structions (CIC) [4], a higher-order typed λ-calculus extended with
inductive de�nitions. �eorem proving in Coq follows the ideas
of the so-called “BHK-correspondence”5, where types represent
logical formulas, λ-terms represent proofs, and the task of check-
ing if a piece of text is a proof of a given formula corresponds to
type-checking (i.e. checking if the term that represents the proof
has the type corresponding to the given formula) [29].

Writing a proof term whose type is that of a logical formula can
be however a hard task, even for simple propositions. In order to
make this task easier, Coq provides tactics, which are commands
that can be used to help the user in the construction of proof terms.

In this section we provide a brief overview of Coq. We start with
the small example, that uses basic features of Coq — types, functions
and proof de�nitions. In this example, we use an inductive type
that represents natural numbers in Peano notation. �e nat type
de�nition includes an annotation, that indicates that it belongs to
the Set sort6. Type nat is formed by two data constructors: O, that
represents the number 0, and S, the successor function.

Inductive nat : Set :=
| O : nat
| S : nat→ nat.

Fixpoint plus (n m : nat) : nat :=
match n with

| O⇒ m
| S n′ ⇒ S (plus n′ m)

end.

Theorem plus 0 r : ∀ n, plus n 0 = n.
Proof .

intros n.induction n as [ | n′ ].
reflexivity.

5Abbreviation of Brower, Heyting, Kolmogorov, de Bruijn and Martin-Löf Correspon-
dence. �is is also known as the Curry-Howard “isomorphism”.
6Coq’s type language classi�es new inductive (and co-inductive) de�nitions by using
sorts. Set is the sort of computational values (programs) and Prop is the sort of logical
formulas and proofs.

simpl.rewrite→ IHn′.reflexivity.
Qed.

Command Fixpoint allows the de�nition of functions by structural
recursion. �e de�nition of plus, for summing two values of type
nat, is straightforward. It should be noted that all functions de�ned
in Coq must be total.

Besides declaring inductive types and functions, Coq allows us
to de�ne and prove theorems. In our exemple, we show a simple
theorem about plus, that states that plus n 0 = n, for an arbitrary
value n of type nat. Command Theorem allows the statement of
a formula that we want to prove and starts the interactive proof
mode, in which tactics can be used to produce the proof term that
is the proof of such formula. In an interactive section of Coq, a�er
enunciation of theorem plusOr, we must prove the following goal:

=====================

∀ n : nat, plus n 0 = n

A�er command Proof , we can use tactics to build, step by step,
a term of the given type. �e �rst tactic, intros, is used to move
premisses and universally quanti�ed variables from the goal to the
hypothesis. As a result of using intros, the quanti�ed variable n is
moved from the goal to the hypothesis, resulting in the following:

n : nat
=====================

plus n 0 = n

In order to prove goal plus n 0 = n we can proceed by induction
over the structure of n, by using tactic induction. �is generates
one goal for each constructor of type nat (O and S), leaving us with
two goals to be proved:

2 subgoals

=====================

plus 0 0 = 0

subgoal 2 is :
plus (S n′) 0 = S n′

Goal plus 0 0 = 0 can be shown to hold directly by the de�nition of
plus. Tactic reflexivity proves such equalities, a�er reducing both
sides of the equality to their normal forms. �e next goal to be
proved is:

n′ : nat
IHn′ : plus n′ 0 = n′

=====================

plus (S n′) 0 = S n′

Tactic induction automatically generates the induction hypothesis
IHn′ for this theorem. In order to �nish the proof, we need to
transform the goal to use the inductive hypothesis. In this case we
can simply use tactic simpl, for performing reductions based on the
de�nition of plus. �is changes the goal to:

n′ : nat
IHn′ : plus n′ 0 = n′

=====================

S (plus n′ 0) = S n′

Since the goal now has exactly the le� hand side of the hypothesis
IHn′ as a sub-term , we can use tactic rewrite. �e use of rewrite→
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λ n : nat⇒
nat ind
(λ n0 : nat⇒ plus n0 O = n0) (eq refl O)
(λ (n′ : nat) (IHn′ : plus n′ O = n′) ⇒

eq ind r (λ n0 : nat⇒ S n0 = S n′)
(eq refl (S n′)) IHn′) n
: ∀ n : nat, plus n O = n

Figure 6. Term that represents the proof of theorem plus 0 r.

IHn′ replaces plus n′ 0 by n′ (rewrite ← IHn′ does the reverse,
i.e. replaces n′ by plus n′ 0). We obtain now the following:
n′ : nat
IHn′ : plus n′ 0 = n′

=====================

S n′ = S n′

Goal S n′ = S n′ can be proven by using reflexivity.
�is tactic script creates the term presented in Figure 6. For

each inductively de�ned data type, Coq generates automatically
an induction principle [4, Chapter 14]. For natural numbers, the
following Coq term, called nat ind, is created:
nat ind

: ∀ P : nat→ Prop,
P O→ (∀ n : nat,P n→ P (S n)) →
∀ n : nat,P n

It expects a property (P) over natural numbers (a value of type
nat→ Prop), a proof that P holds for zero (a value of type P 0) and
a proof that if P holds for an arbitrary natural n, then it holds for S n
(a value of type ∀ n:nat,P n→ P (S n)). Besides nat ind, generated
by the use of tactic induction, the term in Figure 6 uses the construc-
tor of the equality type eq refl, created by tactic reflexivity, and
term eq ind r, inserted by the use of tactic rewrite. Term eq ind r
allows concluding P y based on the assumptions that P x and x = y
are provable. Instead of using tactics, one could instead write CIC
terms directly to prove theorems. �is can be however a complex
task, even for simple theorems like plus 0 r, because it generally
requires detailed knowledge of the CIC type system.

An interesting feature of Coq is the possibility of de�ning induc-
tive types that mix computational and logical parts. Such types are
usually called strong speci�cations, since they allow the de�nition
of functions that compute values together with a proof that this
value has some desired property. As an example, consider type sig
below, also called “subset type”, that is de�ned in Coq’s standard
library as:
Inductive sig (A : Set) (P : A→ Prop) : Set :=
| exist : ∀ x : A,P x→ sig A P.

Type sig is usually expressed in Coq by using the following syntax:
{x : A | P x} Constructor exist has two parameters. Parameter x of
type A represents the computational part. �e other parameter, of
type P x, denotes the “certi�cate” that x has the property speci�ed
by predicate P. As an example, consider:
∀ n : nat, n,O→ {p | n = S p}.

�is type can be used to specify a function that returns the predeces-
sor of a natural number n, together with a proof that the returned

value really is the predecessor of n. �e de�nition of a function of
type sig requires the speci�cation of a logical certi�cate. As occurs
in the case of theorems, tactics can be used in the de�nition of such
functions. For example, a de�nition of a function that returns the
predecessor of a given natural number, if it is di�erent from zero,
can be given as follows:

Definition pred cert : ∀ n : nat, n,O→ {p | n = S p}.
intros n H.
destruct n as [ | n′ ].
destruct H.reflexivity.
exists n′.reflexivity.

Defined.

Tactic destruct is used to start a proof by case analysis on structure
of a value.

Another example of a type that can be used to provide strong
speci�cations in Coq is sumor, that is de�ned in the standard library
as follows:

Inductive sumor (A : Set) (B : Prop) : Set :=
| inle� : A→ sumor A B
| inright : B→ sumor A B

Coq standard library also provides syntactic sugar (or, in Coq’s
terminology, notations) for using this type: “sumor A B” can be
wri�en as A + {B}. �is type can be used as the type of a function
that returns either a value of type A or a proof that some property
speci�ed by B holds. As an example, we can specify the type of a
function that returns a predecessor of a natural number or a proof
that the given number is equal to zero as follows, using type sumor:

{p | n = S p} + {n = O}

A common problem when using rich speci�cations for functions
is the need of writing proof terms inside its de�nition body. A
possible solution for this is to use the refine tactic, which allows
one to specify a term with missing parts (knowns as “holes”) to be
�lled la�er using tactics.

�e next code piece uses the refine tactic to build the computa-
tional part of a certi�ed predecessor function. We use holes to mark
positions where proofs are expected. Such proof obligations are
later �lled by tactic reflexivity which �nishes pred cert de�nition.

Definition pred cert : ∀ n : nat, {p | n = S p} + {n = 0}.
refine (λ n⇒

match n with

| O⇒ inright
| S n′ ⇒ inle� (exist n′ )

end); reflexivity.
Defined.

4.2.2 A veri�ed interpreter for the small-step semantics
RE Syntax and contexts de�nition. We let the following induc-
tive type denote the syntax of RE.

Inductive regex : Set :=
| Emp : regex
| Eps : regex
| Chr : ascii→ regex
| Cat : regex→ regex→ regex
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| Choice : regex→ regex→ regex
| Star : regex→ regex.

To ease the task of writing code that manipulate regex values, we
introduce notations to represent its constructor in a more friendly
way. For exemple, let e, e1 : regex. Instead of writing Cat e1 e2,
a�er de�ning the notations below, we can just write e1@e2.

Notation "’#0’" := Emp.
Notation "’#1’" := Eps.
Notation "’$’ c" := (Chr c) (at level 40).
Notation "e ’@’ e1" := (Cat e e1)
(at level 15, left associativity).

Notation "e ’:+:’ e1" := (Choice e e1)
(at level 20, left associativity).

Notation "e ’ˆ*’" := (Star e) (at level 40).

Having de�ned the RE syntax, our next step is to de�ne its data-type
of one-hole contexts.

Inductive hole : Set :=
| Le�ChoiceHole : regex→ hole
| RightChoiceHole : regex→ hole
| Le�CatHole : regex→ hole
| RightCatHole : regex→ hole
| StarHole : hole.

Definition ctx := list hole.

�e structure of hole and regex are just translations of its Haskell’s
correspondent de�nitions to Coq.

Small-step semantics. Unlike Haskell, Coq supports full depen-
dent types which allow us to specify inductively de�ned relations
as Coq types. Representing our small-step semantics in Coq is just a
ma�er of de�ning a data type such that its constructors denote the
rules of the proposed semantics. Data type dir denotes the direction
and conf the con�guration used by the semantics.

Inductive dir : Set :=
| B : dir | F : dir.

Inductive conf : Set :=
MkConf : dir→ regex→ ctx→ list bit→ string→ conf.

Notation "[[ d , e , c , b , s ]]" := (MkConf d e c b s).

As usual in Coq’s developments, we use a notation to ease the task
of writing conf values.

Inductive step : conf → conf → Prop :=
| Eps : ∀ c b s,
[[B, #1, c, b, s]]⇒[[F, #1, c, b, s]]
| Chr : ∀ c b s a,
[[B, $a, c, b, (String a s)]]⇒[[F, $a, c, b, s]]
| Le�B : ∀ c b s e e′ c′ b′,
c′ = Le�ChoiceHole e′ :: c→
b′ = 0b :: b→
[[B, e + e′, c, b, s]]⇒[[B, e, c′, b′, s]]
| Le�E : ∀ e e′ c s b c′ b′,
c′ = Le�ChoiceHole e′ :: c→
b′ = 0b :: b→
[[F, e, c′, b, s]]⇒[[F, e + e′, c, b′, s]]

(∗some constructors omi�ed∗)
where c⇒c1 := (step c c1).

Interpreter de�nition. Having de�ned our semantics as a Coq
data type, implementing its certi�ed interpreter is just a ma�er of
expressing its correctness property as the interpreter’s type.

Our �rst step in the formalization is to de�ne a veri�ed version
of next function which produces a list of con�gurations reached
a�er executing one-step from a given input Conf. �e Coq type for
next is as follows:

Definition next (c : conf) : {cs : list conf | ∀ c′, In c′ cs→ c⇒c′ }.

Such type speci�es that from a given con�guration (c : conf) we
produce a list cs of con�gurations that can be reached in one step
from c (i.e. such that for any c′∈ cs, we have that c⇒c′). Since such
function de�nition involve proof terms, we use the refine tactic to
mark proof positions as holes to be �lled la�er with tactics. Below,
we show parts of the next de�nition.

refine (match c with

| [[B, #1, co, b, s]] ⇒
exist ([[F, #1, co, b, s]]::nil)
| [[B, $a, co, b, (String a′ s)]] ⇒

if ascii dec a a′ then

exist ([[F, $a, co, b, s]]::nil)
else exist (@nil conf)
| [[B, e + e′, c, b, s]] ⇒
exist ([[B, e, Le�ChoiceHole e′::c, 0b::b, s]]::
[[B, e′,RightChoiceHole e::c, 1b::b, s]]::nil)

(∗some code omi�ed∗)
end) (∗tactics omi�ed∗)

�e �rst equation of next de�nition shows the code for the
semantics rule Eps: Given a con�guration [[B, #1, co, b, s]], the
unique possible result is a singleton list containing [[F, #1, co, b, s]].
Second equation deals with single character REs and it speci�es that
if the input string starts with the same character as the RE’s, the re-
sult should be a list containing only the con�guration [[F, $a, co, b, s]];
otherwise an empty list is returned. Whenever the input conf is
of the form [[B, e + e′, c, b, s]], we need to output the two possible
resulting con�gurations: one for the le�-hand side of the input RE:

[[B, e, Le�ChoiceHole e′::c, 0b::b, s]]

which corresponds to rule Le f tB and the con�guration equivalent
to rule RiдhtB
[[B, e′,RightChoiceHole e::c, 1b::b, s]]

�e equations for other rules follows a similar pa�ern and are
omited for brevity.

Having de�ned the function next, we need to compute its re�exive-
transtive closure. We let notation⇒? denote the re�exive-transitive
closure of the relation step. In order to build the closure of next
function, we use some auxiliar de�nitions.

First, we de�ne nexts type as a type for a function that returns
a list of all accessible con�gurations, in one-step of execution, from
a given input list of conf’s.

Definition nexts type (cs : list conf) :=
{cs′ | ∀ c′, In c′ cs′ → ∃ c, In c cs∧c⇒c′ } + {cs = [ ]}.



Towards certified virtual machine-based regular expression parsing SBLP2018, September 17–21, 2018, São Carlos

We name such function as nexts and we omit its refine tactic based
de�nition. Finally, our certi�ed interpreter is built using nexts
function and its type is presented below:

Definition steps : ∀ (cs : list conf) (n : nat),
{css | ∀ c′, In c′ css→ ∃ c, In c cs∧c⇒?c′ } + {cs = [ ]}.

Again, we use refine tactic to construct such function. Its type
speci�es that it returns a list con�gurations that can be reached
a�er zero or more steps from the input con�guration list. It is
worth to mention that such function is de�ned by recursion over a
“fuel” parameter [24] to ensure its structurally recursive de�nition.
Currently, we are working on de�ning steps function using well-
founded relations or even domain predicates [5].

5 Related work
Ierusalimschy [17] proposed the use of Parsing Expression Gram-
mars (PEGs) as a basis for pa�ern matching. He argued that pure
REs is a weak formalism for pa�ern-matching tasks: many interest-
ing pa�erns either are di�cult to to describe or cannot be described
by REs. He also said that the inherent non-determinism of REs
does not �t the need to capture speci�c parts of a match. Following
this proposal, he presented LPEG, a pa�ern-matching tool based on
PEGs for the Lua language. He argued that LPEG uni�es the ease
of use of pa�ern-matching tools with the full expressive power of
PEGs. He also presented a parsing machine (PM) that allows an
implementation of PEGs for pa�ern matching. In [25], Medeiros
et. al. presents informal correctness proofs of LPEG PM. While
such proofs represent a important step towards the correctness of
LPEG, there is no guarantee that LPEG implementation follows its
speci�cation.

In [27], Rathnayake and �ielecke formalized a VM implementa-
tion for RE matching using operational semantics. Speci�cally, they
derived a series of abstract machines, moving from the abstract
de�nition of matching to realistic machines. First, a continuation
is added to the operational semantics to describe what remains to
be matched a�er the current expression. Next, they represented
the expression as a data structure using pointers, which enables
redundant searches to be eliminated via testing for pointer equality.
Although their work has some similarities with ours (a VM-based
parsing of REs), they did not present any evidence or proofs that
their VM is correct.

Fischer, Huch and Wilke [12] developed a Haskell program for
matching REs. �e program is purely functional and it is overloaded
over arbitrary semirings, which solves the matching problem and
supports other applications like computing le�most longest match-
ings or the number of matchings. �eir program can also be used
for parsing every context-free language by taking advantage of
laziness. �eir developed program is based on an old technique to
turn REs into �nite automata, which makes it e�cient compared to
other similar approaches. One advantage of their implementation
over our proposal is that their approach works with context-free
languages, not only with REs purely. However, they did not present
any correctness proofs of their Haskell code.

Cox [7] said that viewing RE matching as executing a special
machine makes it possible to add new features just by the inclusion
of new machine instructions. He presented two di�erent ways
to implement a VM that executes a RE that has been compiled
into byte-codes: a recursive and a non-recursive backtracking im-
plementation, both in C programming language. Cox’s work on

VM-based RE parsing is poorly speci�ed: both the VM semantics
and the RE compilation process are described only informally and
no correctness guarantees is even mentioned.

Frisch and Cardelli [14] studied the theoretical problem of match-
ing a �at sequence against a type (RE): the result of the process is a
structured value of a given type. �eir contributions were in notic-
ing that: (1) A disambiguated result of parsing can be presented as
a data structure that does not contain ambiguities. (2) �ere are
problematic cases in parsing values of star types that need to be
disambiguated. (3) �e disambiguation strategy used in XDuce and
CDuce (two XML-oriented functional languages) pa�ern match-
ing can be characterized mathematically by what they call greedy
RE matching. (4) �ere is a linear time algorithm for the greedy
matching. �eir approach is di�erent since they want to axiomatize
abstractly the disambiguation policy, without providing an explicit
matching algorithm. �ey identify three notions of problematic
words, REs, and values (which represent the ways to match words),
relate these three notions, and propose matching algorithms to deal
with the problematic case.

Ribeiro and Du Bois [28] described the formalization of a RE
parsing algorithm that produces a bit representation of its parse
tree in the dependently typed language Agda. �e algorithm com-
putes bit-codes using Brzozowski derivatives and they proved that
the produced codes are equivalent to parse trees ensuring sound-
ness and completeness with respect to an inductive RE semantics.
�ey included the certi�ed algorithm in a tool developed by them-
selves, named verigrep, for RE-based search in the style of GNU
grep. While the authors provide formal proofs, their tool show
a bad performance when compared with other approaches to RE
parsing. Besides, they did not prove that their algorithm follows
some disambiguation policy, like POSIX or greedy.

Nielsen and Henglein [26] showed how to generate a compact
bit-coded representation of a parse tree for a given RE e�ciently,
without explicitly constructing the parse tree �rst, by simplifying
the DFA-based parsing algorithm of Dubé and Feeley [9] to emit a
bit representation without explicitly materializing the parse tree
itself. �ey also showed that Frisch and Cardelli�s greedy RE pars-
ing algorithm [14] can be straightforwardly modi�ed to produce
bit codings directly. �ey implemented both solutions as well as
a backtracking parser and performed benchmark experiments to
measure their performance. �ey argued that bit codings are inter-
esting in their own right since they are typically not only smaller
than the parse tree, but also smaller than the string being parsed
and can be combined with other techniques for improved text com-
pression. As others related works, the authors did not present a
formal veri�cation of their implementations.

An algorithm for POSIX RE parsing is described in [30]. �e
main idea of the article is to adapt derivative parsing to construct
parse trees incrementally to solve both matching and submatching
for REs. In order to improve the e�ciency of the proposed algo-
rithm, Sulzmann et al. use a bit encoded representation of RE parse
trees. Textual proofs of correctness of the proposed algorithm are
presented in an appendix.

6 Conclusion
In this work, we presented a small-step operational semantics for
a virtual machine for RE parsing inspired on �ompson’s NFA
construction. Our semantics produces, as parsing evidence, bit-
codes which can be used to characterize which disambiguation
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strategy is followed by the semantics. We use data-type derivatives
to represent evaluation contexts for RE. Such contexts are used to
decide how to �nish the execution of the RE on focus. We have
developed a prototype implementation of our semantics in Haskell
and use �ickCheck to verify its relevant properties with respect
to a simple implementation of RE parsing by Fisher et. al. [12].

Currently, we have a formalized interpreter of our semantics in
Coq proof assistant [4] available at project’s on-line repository [8].
We are working on formalizing the equivalence between the pro-
posed semantics and the standard RE inductive semantics.

As future work we intend to use our veri�ed semantics to build
a certi�ed tool for RE parsing, work on proofs that the semantics
follow a speci�c disambiguation strategy and investigate how other
algorithms (e.g. the Glushkov construction [16]) for converting a
RE into a �nite state machine could be expressed in terms of an
operational semantics.
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A Correctness of the accept function
Fisher et. al. [12] presents a simple and elegant function for parsing
a string using a RE. It relies on two auxiliar functions that break
an input string into its parts. �e �rst is function split which
decompose the input string in a pre�x and a su�x.
split::[a] → [([a], [a])]
split [ ] = [([ ], [ ])]
split (c : cs) = ([ ], c : cs) : [(c : s1, s2) | (s1, s2) ← split cs]

Function split has the following correctness property.

Lemma 1. Let xs be an arbitrary list. For all ys, zs such that (ys, zs)
∈ split xs, we have that xs ≡ ys ++ zs.

Proof. By induction on the structure of xs. �

Function parts decomposes a string into a list of its parts. Such
property is expressed by the following lemma.

Lemma 2. Let xs be an arbitrary list. For all yss such that yss ∈
parts xs, we have that concat yss ≡ xs.

Proof. By induction on the structure of xs. �

Finally, function accept is de�ned by recursion on the input RE
using functions parts and split in the Kleene star and concatenation
cases. �e correctness of accept states that it returns true only
when the input string is in input RE’s language, as stated in the
next theorem.

�eorem 5. For all s and e, accept e s ≡ True if, and only if,
s ∈ JeK.

https://doi.org/10.1007/3-540-44904-3_2
http://arxiv.org/abs/1010.2604
http://arxiv.org/abs/1010.2604
http://arxiv.org/abs/1010.2604
https://doi.org/10.1017/S0960129514000115
https://swtch.com/
https://doi.org/10.1007/s002360000037
https://doi.org/10.1007/s002360000037
https://doi.org/10.1007/978-3-319-03545-1_7
https://doi.org/10.1145/1932681.1863594
https://doi.org/10.1145/1932681.1863594
https://doi.org/10.1145/964001.964011
https://doi.org/10.1145/1291201.1291203
https://doi.org/10.1002/spe.892
https://doi.org/10.1002/spe.892
https://doi.org/10.1007/BF00289517
http://www.cs.uu.nl/~
http://www.cs.uu.nl/~
https://doi.org/10.1145/1328438.1328474
https://doi.org/10.1145/1328438.1328474
https://doi.org/10.1007/978-3-319-19797-5_13
https://doi.org/10.1007/978-3-319-19797-5_13
https://doi.org/10.1145/1408681.1408683
https://doi.org/10.4204/EPTCS.62.3
http://arxiv.org/abs/1108.3126
http://dl.acm.org/citation.cfm?doid=3125374.3125381


Towards certified virtual machine-based regular expression parsing SBLP2018, September 17–21, 2018, São Carlos

Proof.

(→) : By induction on the structure of e using lemmas about
parts and split.

(←) : By induction on the derivation of s ∈ JeK.
�
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