
Towards certi�ed virtual machine-based regular expression
parsing

�ales Antônio Del�no
Universidade Federal de Ouro Preto

Ouro Preto, Minas Gerais, Brazil

Rodrigo Ribeiro
Universidade Federal de Ouro Preto

Ouro Preto, Minas Gerais, Brazil

Abstract
Regular expressions (REs) are pervasive in computing. We use
REs in text editors, string search tools (like GNU-Grep) and lexical
analysers generators. Most of these tools rely on converting regular
expressions to its corresponding �nite state machine or use REs
derivatives for directly parse an input string. In this work, we
investigate the suitability of another approach: instead of using
derivatives or generate a �nite state machine for a given RE, we
developed a virtual machine (VM) for parsing regular languages,
in such a way that a RE is merely a program executed by the VM
over the input string. We developed a prototype implementation in
Haskell, tested it using �ickCheck and provided proof sketches
of its correctness with respect to RE standard inductive semantics.

CCSConcepts •�eory of computation→Regular languages;
Operational semantics;

Keywords Regular Expressions, Parsing, Virtual Machines, Oper-
ational semantics
ACM Reference format:
�ales Antônio Del�no and Rodrigo Ribeiro. 2018. Towards certi�ed virtual
machine-based regular expression parsing. In Proceedings of XXII Brazilian
Symposium on Programming Languages, SAO CARLOS, Brazil, September
20–21, 2018 (SBLP 2018), 8 pages.
DOI: h�ps://doi.org/10.1145/3264637.3264646

1 Introduction
We name parsing the process of analyzing if a sequence of symbols
matches a given set of rules. Such rules are usually speci�ed in a
formal notation, like a grammar. If a string can be obtained from
those rules, we have success: we can build some evidence that the
input is in the language described by the underlying formalism.
Otherwise, we have a failure: no such evidence exists.

In this work, we focus on the parsing problem for regular expres-
sions (REs), which are an algebraic and compact way of de�ning
regular languages (RLs), i.e., languages that can be recognized by
(non-)deterministic �nite automata and equivalent formalisms. REs
are widely used in string search tools, lexical analyser generators
and XML schema languages [13]. Since RE parsing is pervasive in
computing, its correctness is crucial and is the subject of study of
several recent research works (e.g [3, 10, 20, 25]).

Approaches for RE parsing can use representations of �nite
state machines (e.g. [10]), derivatives (e.g. [20, 25]) or the so-called

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or
a fee. Request permissions from permissions@acm.org.
SBLP 2018, SAO CARLOS, Brazil
© 2018 ACM. 978-1-4503-6480-5. . .$15.00
DOI: h�ps://doi.org/10.1145/3264637.3264646

pointed RE’s or its variants [3, 11]. Another approach for parsing is
based on the so-called parsing machines, which dates back to 70’s
with Knuth’s work on top-down syntax analysis for context-free
languages [17]. Recently, some works have tried to revive the use
of such machines for parsing: Cox [6] de�ned a VM for which a
RE can be seen as “high-level programs” that can be compiled to
a sequence of such VM instructions and Lua library LPEG [16]
de�nes a VM whose instruction set can be used to compile Parser
Expressions Grammars (PEGs) [12]. Such renewed research interest
is motivated by the fact that is possible to include new features by
just adding and implementing new machine instructions.

Since LPEG VM is designed with PEGs in mind, it is not ap-
propriate for RE parsing, since the “star” operator for PEGs has a
greedy semantics which di�ers from the conventional RE semantics
for this operator. Also, Cox’s work on VM-based RE parsing has
problems. First, it is poorly speci�ed: both the VM semantics and
the RE compilation process are described only informally and no
correctness guarantees is even mentioned. Second, it does not pro-
vide an evidence for matching, which could be used to characterize
a disambiguation strategy, like Greedy [13] and POSIX [26]. To the
best of our knowledge, no previous work has formally de�ned a VM
for RE parsing that produces evidence (parse trees) for successul
matches. �e objective of this work is to give a �rst step in �lling
this gap. More speci�cally, we are interested in formally specify,
implement and test the correctness of a VM based small-step seman-
tics for RE parsing which produces bit-codes as a memory e�cient
representation of parse-trees. As pointed by [23], bit-codes are
useful because they are not only smaller than the parse tree, but
also smaller than the string being parsed and they can be combined
with methods for text compression. We leave the task of proving
that our VM follows a speci�c disambiguation strategy to future
work.

Our contributions are:
• We present a small-step semantics for RE inspired by �omp-

son’s NFA1 construction [27]. �e main novelty of this pre-
sentation is the use of data-type derivatives, a well-known
concept in functional programming community, to repre-
sent the context in which the current RE being evaluated
occurs. We show informal proofs2 that our semantics is
sound and complete with respect to RE inductive semantics.

• We describe a prototype implementation of our semantics
in Haskell and use �ickCheck [5] to test our semantics
against a simple implementation of RE parsing, presented
in [11], which we conjecture that is correct. Our test cases
cover both accepted and rejected strings for randomly gen-
erated REs.

1Non-deterministic �nite automata.
2By “informal proofs” we mean proofs that are not mechanized in a proof-assistant.
Due to space reasons, proofs of the relevant theorems are omi�ed from this version.
Detailed proofs can be found in the accompanying technical report avaliable on-line [7].

SBLP 2018, September 20–21, 2018, SAO CARLOS, Brazil Thales Antônio Delfino and Rodrigo Ribeiro

• We show how our proposed semantics can produce bit
codes that denote parse trees [23] and test that such gen-
erated codes correspond to valid parsing evidence using
�ickCheck.

We are aware that using automated testing is not su�cient to
ensure correctness, but it can expose bugs before using more for-
mal approaches, like formalizing our algorithm in a proof assistant.
Such semantic prototyping step is crucial since it can avoid proof
a�empts that are doomed to fail due to incorrect de�nitions. �e
project’s on-line repository [7] contains the partial Coq formaliza-
tion of our semantics. Currently, we have formalized the semantics
and its interpreter function. �e Coq proof that the proposed small-
step semantics is equivalent to the usual inductive RE semantics is
under development.

�e rest of this paper is organized as follows. Section 2 presents
some background concepts on RE and data type derivatives that
will be used in our semantics. Our operational semantics for RE
parsing and its theoretical properties are described in Section 3.
Our prototype implementation and the �ickCheck test suit used
to validate it are presented in Section 4. Section 5 discuss related
work and Section 6 concludes.

We assume that the reader knows the Haskell programming
language, specially the list monad and how it can be used to model
non-determinism. Good introductions to Haskell are available
elsewhere [18]. All source code produced, including the literate
Haskell source of this article (which can be preprocessed using
lhs2TEX [19]), instructions on how to build it and reproduce the
developed test suit are avaliable on-line [7].

2 Background
2.1 Regular expressions: syntax and semantics
REs are de�ned with respect to a given alphabet. Formally, the
following context-free grammar de�nes RE syntax:

e ::= ∅ | ϵ | a | e e | e + e | e?

Meta-variable e will denote an arbitrary RE and a an arbitrary
alphabet symbol. As usual, all meta-variables can appear primed or
subscripted. In our Haskell implementation, we represent alphabet
symbols using type Char.
data Regex = ∅ | ϵ | Chr Char | Regex • Regex
| Regex + Regex | Star Regex

Constructors ∅ and ϵ denote respectively the empty set (∅) and
the empty string (ϵ) REs. Alphabet symbols are constructed by using
the Chr constructor. Bigger REs are built using concatenation (•),
union (+) and Kleene star (Star).

Following common practice [20, 24, 25], we adopt an inductive
characterization of RE membership semantics. We let judgement
s ∈ JeK denote that string s is in the language denoted by RE e .

Rule Eps states that the empty string (denoted by the ϵ) is in the
language of RE ϵ .

For any single character a, the singleton string a is in the RL
for Chr a. Given membership proofs for REs e and e′, s ∈ JeK and
s ′ ∈ Je ′K, ruleCat can be used to build a proof for the concatenation
of these REs. Rule Le� (Right) creates a membership proof for e +e ′
from a proof for e (e ′). Semantics for Kleene star is built using the
following well known equivalence of REs: e? = ϵ + e e?.

We say that a RE e is problematic if e = e ′? and ϵ ∈ Je ′K [13].
In this work, we limit our a�ention to non-problematic RE’s. Our

ϵ ∈ JϵK
{Eps} a ∈ Σ

a ∈ JaK
{Chr }

s ∈ JeK
s ∈ Je + e ′K

{Le�}
s ′ ∈ Je ′K

s ′ ∈ Je + e ′K
{Right}

ϵ ∈ Je?K
{StarBase}

s ∈ JeK s ′ ∈ Je?K
ss ′ ∈ Je?K

{StarRec}

s ∈ JeK s ′ ∈ Je ′K
ss ′ ∈ Jee ′K

{Cat}

Figure 1. RE inductive semantics.

results can be extended to problematic REs without providing any
new insight [13, 23].

2.2 RE parsing and bit-coded parse trees
RE parsing. One way to represent parsing evidence is to build a
tree that denotes a RE membership proof. Following [13, 23], we
let parse trees be terms whose type is underlying RE.
data Tree = () | Chr Char | Tree • Tree | InL Tree
| InR Tree | List [Tree]

Constructor () denotes a tree for RE ϵ andChr is a tree for a single
character RE. Trees for concatenations are pairs, constructors InL
and InR denotes trees for the le� and right component of a choice
operator. Finally, a tree for RE e? is a list of trees for RE e . �is
informal relation is speci�ed by the following inductive relation
between parse trees and RE. We let ` t : e denote that t is a parse
tree for RE e .

` () : ϵ ` Chr a : a
` t : e

` InL t : e + e ′

` t′ : e ′
` InR t′ : e + e ′

` t : e ` t′ : e ′
` t • t′ : ee ′

∀t.t ∈ ts→` t : e
` List ts : e?

Figure 2. Parse tree typing relation.

�e relation between RE semantics and its parse trees are for-
malized using the function flat, which builds the string stored in a
given parse tree. �e Haskell implementation of flat is immediate.
flat :: Tree→ String
flat () = ""

flat (Chr c) = [c]
flat (t • t′) = flat t ++ flat t′

flat (InL t) = flat t
flat (InR t) = flat t
flat (List ts) = concatMap flat ts

�e next theorem, which relates parse tress and RE semantics,
can be proved by an easy induction on the RE semantics derivation.

�eorem 1. For all s and e , if s ∈ JeK then exists a tree t such that
flat t = s and ` t : e .

Towards certified virtual machine-based regular expression parsing SBLP 2018, September 20–21, 2018, SAO CARLOS, Brazil

Bit-coded parse trees. Nielsen et. al. [23] proposed the use of
bit-marks to register which branch was chosen in a parse tree
for union operator, +, and to delimit di�erent matches done by
Kleene star expression. Evidently, not all bit sequences correspond
to valid parse trees. Ribeiro et. al. [25] showed an inductively
de�ned relation between valid bit-codes and RE, accordingly to the
encoding proposed by [23]. We let the judgement bs B e denote
that the sequence of bits bs corresponds to a parse-tree for RE e .

[] B ϵ [] B a
bs B e

0b : bs B e + e ′

bs B e ′

1b : bs B e + e ′
bs B e bs′ B e ′

bs ++ bs′ B ee ′ [1b] B e?

bs B e bss B e?

0b : bs ++ bss B e?

Figure 3. Typing relation for bit-codes.

�e empty string and single character RE are both represented
by empty bit lists. Codes for RE ee ′ are built by concatenating codes
of e and e ′. In RE union operator, +, the bit 0b marks that the parse
tree for e + e ′ is built from e’s and bit 1b that it is built from e ′’s.
For the Kleene star, we use bit 1b to denote the parse tree for the
empty string and bit 0b to begin matchings of e in a parse tree for
e?.

�e relation between a bit-code and its underlying parse tree
can be de�ned using functions code and decode. Type Code used
in code and decode de�nition is just a synonym for [Bit]. Function
code has an immediate de�nition by recursion on the structure of
parse tree.

code :: Tree→ Regex→ Code
code (InL t) (e +) = 0b : code t e
code (InR t′) (+ e′) = 1b : code t′ e′
code (List ts) (Star e) = 0b : codeList ts e
code (t • t′) (e • e′) = code t e ++ code t′ e′

code = []

codeList :: [Tree] → Regex→ Code
codeList ts e = foldr (λt ac→ 0b : code t e ++ ac) [1b] ts

To de�ne function decode, we need to keep track of the remain-
ing bits to be processed to �nish tree construction. �is task is done
by an auxiliar de�nition, dec.

dec :: Regex→ Code→ Maybe (Tree,Code)
dec ϵ bs = return ((), bs)
dec (Chr c) bs = return (Chr c, bs)
dec (e +) (0b : bs) = do

(t, bs1) ← dec e bs
return (InL t, bs1)

dec (+ e′) (1b : bs) = do

(t′, bs1) ← dec e′ bs
return (InR t′, bs1)

dec (e • e′) bs = do

(t, bs1) ← dec e bs
(t′, bs′) ← dec e′ bs1

return (t • t′, bs′)
dec (Star e) bs = do

(ts, bs′) ← decodeList e bs
return (List ts, bs′)

dec = fail "invalid bit code"

For single character and empty string REs, its decoding consists in
just building the tree and leaving the input bit-coded untouched.
We build a le� tree (using InL) for e + e ′ if the code starts with
bit 0b. A parse tree using constructor InR is built whenever we
�nd bit 1b for a union RE. Building a tree for concatenation is
done by sequencing the processing of codes for le� component of
concatenation and starting the processing of right component with
the remaining bits from the processing of the le� RE.

decodeList :: Regex→ Code→ Maybe ([Tree],Code)
decodeList [] = fail "fail decodeList"

decodeList (1b : bs) = return ([], bs)
decodeList e (0b : bs) = do

(t, be) ← dec e bs
(ts, bs′) ← decodeList e be
return (t : ts, bs′)

Function decodeList generate a list of parse trees consuming the bit
0b used as a separator, and bit 1b, which �nishes the list of parsing
results for star operator.

Finally, using dec, the de�nition of decode is immediate.

decode :: Regex→ Code→ Maybe Tree
decode e bs
= case dec e bs of
Just (t, []) → Just t
→ Nothing

�e relation between codes and its correspondent parse trees are
speci�ed by the next theorem.

�eorem 2. Let t be a parse tree such that ` t : e , for some RE e.
�en (code t e) B e and decode e (code t e) = Just t.

Next, we review �ompson NFA construction, which is similar
to the proposed semantics for RE parsing developed in Section 3.

2.3 �ompson NFA construction
�e �ompson NFA construction is a classical algorithm for build-
ing an equivalent NFA with ϵ-transitions by induction over the
structure of an input RE. We follow a presentation given in [2]
where N (e) denotes the NFA equivalent to RE e . �e construction
proceeds as follows. If e = ϵ , we can build the following NFA
equivalent to e .

ϵ

If e = a, for a ∈ Σ, we can make a NFA with a single transition
consuming a:

a

When e = e1 + e2, we let N (e1) be the NFA for e1 and N (e2) the
NFA for e2. �e NFA for e1 + e2 is built by adding a new initial and
accepting state which can be combined with N (e1) and N (e2) using
ϵ-transitions as shown in the next picture.

SBLP 2018, September 20–21, 2018, SAO CARLOS, Brazil Thales Antônio Delfino and Rodrigo Ribeiro

N (e1)

N (e2)

ϵ

ϵ

ϵ

ϵ

�e NFA for the concatenation e = e1e2 is built from the NFAs N (e1)
and N (e2). �e accepting state of N (e1e2)will be the accepting state
from N (e2) and the starting state of N (e1) will be the initial state
of N (e1).

N (e1) N (e2)

Finally, for the Kleene star operator, we built a NFA for the RE e , add
a new starting and accepting states and the necessary ϵ transitions,
as shown below.

N (e1)
ϵ

ϵ

ϵ

ϵ

Originally, �ompson formulate its construction as a IBM 7094
program [27]. Next we reformulate it as a small-step operational
semantics using contexts, modelled as data-type derivatives for RE,
which is the subject of the next section.

2.4 Data-type derivatives
�e usage of evaluation contexts is standard in reduction seman-
tics [9]. Contexts for evaluating a RE during the parse of a string s
can be de�ned by the following context-free syntax:

E[] → E[] + e | e + E[] | E[] e | e E[] | ?

�e semantics of a E[] context is a RE with a hole that needs to
be “�lled” to form a RE. We have two cases for union and concatena-
tion denoting that the hole could be the le� or the right component
of such operators. Since the Kleene star has only a recursive occur-
rence, it is denoted just as a “mark” in context syntax.

Having de�ned our semantics (Figure 4), we have noticed that
our RE context syntax is exactly the data type for one-hole contexts,
known as derivative of an algebraic data type. Derivatives where
introduced by McBride and its coworkers [21] as a generalization
of Huet’s zippers for a large class of algebraic data types [1]. RE
contexts are implemented by the following Haskell data-type:

data Hole = InChoiceL Regex | InChoiceR Regex
| InCatL Regex | InCatR Regex | InStar

Constructor InChoiceL stores the right component of a union RE
(similarly for InChoiceR). We need to store contexts for union
because such information is used to allow backtracking in case
of failure. Constructors InCatL and InCatR store the right (le�)
component of a concatenation and they are used to store the next
subexpresssions that needed to be evaluated during input string
parsing. Finally, InStar marks that we are currently processing an
expression with a Kleene star operator.

3 Proposed semantics
In this section we present the de�nition of an operational semantics
for RE parsing which is equivalent to executing the �ompson’s
construction NFA over the input string. Observe that, the induc-
tive semantics for RE (Figure 1) can be understood as a big-step
operational semantics for RE, since it ignores many details on how
should we proceed to match an input [24].

�e semantics is de�ned as a binary relation between con�gura-
tions, which are 5-uples 〈d, e, c,b, s〉 where:

• d is a direction, which speci�es if the semantics is starting
(denoted by B) or �nishing (F) the processing of the current
expression e .

• e is the current expression being evaluated;
• c is a context in which e occurs. Contexts are just a list of

Hole type in our implementation.
• b is a bit-code for the current parsing result, in reverse order.
• s is the input string currently being processed.

Notation 〈d, e, c,b, s〉 → 〈d ′, e ′, c ′,b ′, s ′〉 denotes that from con-
�guration 〈d, e, c,b, s〉 we can give a step leading to a new state
〈d ′, e ′, c ′,b ′, s ′〉 using the rules speci�ed in Figure 4.

�e rules of the semantics can be divided in two groups: starting
rules and �nishing rules. Starting rules deal with con�gurations
with a begin (B) direction and denote that we are beginning the pars-
ing for its RE e . Finishing rules use the context to decide how the
parsing for some expression should end. Intuitively, starting rules
correspond to transitions entering a sub-automata of �ompson
NFA and �nishing rules to transitions exiting a sub-automata.

�e meaning of each starting rule is as follows. Rule {Eps} spec-
i�es that we can mark a state as �nished if it consists of a starting
con�guration with RE ϵ . We can �nish any con�guration for Chr a
if it is starting with current string with a leading a. Whenever we
have a starting con�guration with a choice RE, e1 + e2, we can
non-deterministically choose if an input string s can be processed
by e1 (rule Le f tB) or e2 (rule RiдhtB). For beginning con�gurations
with concatenation, we parse the input string using each of its
components sequentially. Finally, for starting con�gurations with
a Kleene star operator, e?, we can either start the processing of e
or �nish the processing for e?. In all recursive cases for RE, we
insert context information in the third component of the resulting
con�guration in order to decide how the machine should step a�er
�nishing the execution of the RE currently on focus.

Rule (CatEL) applies to any con�guration which is �nishing with
a le� concatenation context (E[]e ′). In such situation, rule speci�es
that a computation should continue with e ′ and push the con-
text e E[]. We end the computation for a concatenation whenever
we �nd a context e E[] in the context component (rule (CatER)).

Towards certified virtual machine-based regular expression parsing SBLP 2018, September 20–21, 2018, SAO CARLOS, Brazil

〈B, ϵ, c,b, s〉 → 〈F , ϵ, c,b, s〉
(Eps)

〈B,a, c,b,a : s〉 → 〈F ,a, c,b, s〉
(Chr)

b ′ = 0b : b
c ′ = E[] + e ′ : c

〈B, e + e ′, c,b, s〉 → 〈B, e, c ′,b ′, s〉
(Lef tB)

b ′ = 1b : b
c ′ = e + E[] : c

〈B, e + e ′, c,b, s〉 → 〈B, e ′, c ′,b ′, s〉
(RiдhtB)

c ′ = E[]e ′ : c
〈B, ee ′, c,b, s〉 → 〈B, e, c ′,b, s〉

(CatB)
〈B, e?, c,b, s〉 → 〈B, e,? : c, 0b : b, s〉

(Star1)

〈B, e?, c,b, s〉 → 〈F , e?, c, 1b : b, s〉
(Star2)

c ′ = eE[] : c
〈F , e,E[]e ′ : c,b, s〉 → 〈B, e ′, c ′,b, s〉

(CatEL)
〈F , e ′, eE[] : c,b, s〉 → 〈F , ee ′, c,b, s〉

(CatER)

c = E[] + e ′ : c ′

〈F , e, c,b, s〉 → 〈F , e + e ′, c ′, 0b : b, s〉
(Lef tE)

c = e + E[] : c ′

〈F , e, c,b, s〉 → 〈F , e + e ′, c ′, 1b : b, s〉
(RiдhtE)

〈F , e,? : c,b, s〉 → 〈B, e,? : c, 0b : b, s〉
(StarE1)

〈F , e,? : c,b, s〉 → 〈F , e?, c, 1b : b, s〉
(StarE2)

Figure 4. Small-step semantics for RE parsing.

Finishing a computation for choice consists in just popping its cor-
respondent context, as done by rules (Le f tE) and (RiдhtE). For
the Kleene star operator, we can either �nish the computation by
popping the contexts and adding the corresponding 1b to end its
matching list or restart with RE e for another matching over the
input string.

�e starting state of the semantics is given by the con�guration
〈B, e, [], [], s〉 and accepting con�gurations are 〈F , e ′, [],bs, []〉, for
some RE e ′ and code bs . Following common practice, we let→?

denote the re�exive, transtive closure of the small-step semantics
de�ned in Figure 4. We say that a string s is accepted by RE e if
〈B, e, [], [], s〉 →? 〈F , e ′, [],bs, []〉. �e next theorem asserts that
our semantics is sound and complete with respect to RE inductive
semantics (Figure 1).

�eorem 3. For all strings s and non-problematic REs e , s ∈ JeK if,
and only if, 〈B, e, [], [], s〉 →? 〈F , e ′, [],b, []〉 and 〈F , e ′, [],b, []〉 is
an accepting con�guration.

4 Implementation details
In order to implement the small-step semantics of Figure 4, we
need to represent con�gurations. We use type Conf to denote
con�gurations and directions are represented by type Dir, where
Begin denote the starting and End the �nishing direction.
data Dir = Begin | End
type Conf = (Dir,Regex, [Hole],Code, String)

Function finish tests if a con�guration is an accepting one.
finish :: Conf → Bool
finish (End, , [], , []) = True
finish = False

�e small-step semantics is implemented by function next, which
returns a list of con�gurations that can be reached from a given
input con�guration. We will begin by explaining the equations that
code the set of starting rules from the small-step semantics. �e
�rst alternative
next :: Conf → [Conf]
next (Begin, ϵ, ctx, bs, s) = [(End, ϵ, ctx, bs, s)]

implements rule (Eps), which �nishes a starting Conf with an ϵ .
Rule (Chr) is implemented by the following equation
next (Begin,Chr c, ctx, bs, a : s)
| a ≡ c = [(End,Chr c, ctx, bs, s)]
| otherwise = []

which consumes input character a if it matches RE Chr c; otherwise
it fails by returning an empty list. For a choice expression, we
can use two distinct rules: one for parsing the input using its le�
component and another rule for the right. Since both union and
Kleene star introduce non-determinism in RE parsing, we can easily
model this using the list monad, by return a list of possible resulting
con�gurations.
next (Begin, e + e′, ctx, bs, s)
= [(Begin, e, InChoiceL e′ : ctx, 0b : bs, s)
, (Begin, e′, InChoiceR e : ctx, 1b : bs, s)]

Concatenation just sequences the computation of each of its com-
posing RE.
next (Begin, e • e′, ctx, bs, s)
= [(Begin, e, InCatL e′ : ctx, bs, s)]

For a starting con�guration with Kleene star operator, Star e, we
can proceed in two ways: by beginning the parsing of RE e or by
�nishing the computation for Star e over the input.
next (Begin, Star e, ctx, bs, s)
= [(Begin, e, InStar : ctx, 0b : bs, s)
, (End, (Star e), ctx, 1b : bs, s)]

�e remaining equations of next deal with operational semantics
�nishing rules. �e equation below implements rule (CatEL), which
speci�es that an ended computation for the le� component of a
concatenation should continue with its right component.
next (End, e, InCatL e′ : ctx, bs, s)
= [(Begin, e′, InCatR e : ctx, bs, s)]

Whenever we are in a �nishing con�guration with a right concate-
nation context, (InCatR e), we end the parsing of the input for the
whole concatenation RE.

SBLP 2018, September 20–21, 2018, SAO CARLOS, Brazil Thales Antônio Delfino and Rodrigo Ribeiro

next (End, e′, InCatR e : ctx, bs, s)
= [(End, e • e′, ctx, bs, s)]

Next equations implement the rules that �nish con�gurations for
the union, by commiting to its �rst successful branch.

next (End, e, InChoiceL e′ : ctx, bs, s)
= [(End, e + e′, ctx, 0b : bs, s)]

next (End, e′, InChoiceR e : ctx, bs, s)
= [(End, e + e′, ctx, 1b : bs, s)]

Equations for Kleene star implement rules (StarE1) and (StarE2)
which allows ending or add one more match for an RE e .

next (End, e, InStar : ctx, bs, s)
= [(Begin, e, InStar : ctx, 0b : bs, s)
, (End, (Star e), ctx, 1b : bs, s)]

Finally, stuck states on the semantics are properly handled by the
following equation which turns them all into a failure (empty list).

next = []

�e re�exive-transitive closure of the semantics is implemented
by function steps, which computes the trace of all states needed to
determine if a string can be parsed by the RE e .

steps :: [Conf] → [Conf]
steps [] = []
steps cs = steps [c′ | c← cs, c′ ← next c] ++ cs

Finally, the function for parsing a string using an input RE is im-
plemented as follows:

vmAccept :: String→ Regex→ (Bool,Code)
vmAccept s e = let r = [c | c← steps initcfg, finish c]

in if null r then (False, []) else (True, bitcode (head r))
where

initcfg = [(Begin, e, [], [], s)]
bitcode (, , , bs,) = reverse bs

Function vmAccept returns a pair formed by a boolean and the
bit-code produced during the parsing of an input string and RE.
Observe that we need to reverse the bit-codes, since they are built
in reverse order.

4.1 Test suite
An overview of �ickCheck. Our tests are implemented using
�ickCheck [5], a library that allows the testing of properties
expressed as Haskell functions. Such veri�cation is done by gener-
ating random values of the desired type, instantiating the relevant
property with them, and checking it directly by evaluating it to a
boolean. �is process continues until a counterexample is found
or a speci�ed number of cases are tested with success. �e library
provides generators for several standard library data types and
combinators to build new generators for user-de�ned types.

As an example of a custom generator, consider the task of gen-
erating a random alpha-numeric character. To implement such
generator, genChar, we use �ickCheck function suchThat which
generates a random value which satis�es a predicate passed as argu-
ment (in example, we use isAlphaNum, which is true whenever we
pass an alpha-numeric character to it), using an random generator
taken as input.

genChar :: Gen Char
genChar = suchThat (arbitrary :: Gen Char) isAlphaNum

Test case generators. In order to test the correctness of our se-
mantics, we needed to build generators for REs and for strings.
We develop functions to randomly generate strings accepted and
rejected for a RE, using the �ickCheck library.

Generation of random RE is done by function sizedRegex with
takes a depth limit to restrict the size of the generated RE. Whenever
the input depth limit is less or equal to 1, we can only build a ϵ or a
single character RE. �e de�nition of sizedRegex uses �ickCheck
function frequency, which receives a list of pairs formed by a weight
and a random generator and produce, as result, a generator which
uses such frequency distribution. In sizedRegex implementation we
give a higher weight to generate characters and equal distributions
to build concatenation, union or star.

sizedRegex :: Int→ Gen Regex
sizedRegex n
| n 6 1 = frequency [(10, return ϵ), (90,Chr 〈$〉 genChar)]
| otherwise = frequency [(10, return ϵ), (30,Chr 〈$〉 genChar)
, (20, (•) 〈$〉 sizedRegex n2 〈?〉 sizedRegex n2)
, (20, (+) 〈$〉 sizedRegex n2 〈?〉 sizedRegex n2)
, (20, Star 〈$〉 suchThat (sizedRegex n2) (not ◦ nullable))]
where n2 = div n 2

Given an RE e, we can generate a random string s such that
s ∈ JeK using the next de�nition. We generate strings by choosing
randomly between branches of a union or by repeating n times a
string s which is accepted by e , whenever we have e? (function
randomMatches).

randomMatch :: Regex→ Gen String
randomMatch ϵ = return ""

randomMatch (Chr c) = return [c]
randomMatch (e • e′) = li�M2 (++) (randomMatch e)
(randomMatch e′)

randomMatch (e + e′) = oneof [randomMatch e, randomMatch e′]
randomMatch (Star e) = do

n← choose (0, 3) :: Gen Int
randomMatches n e

randomMatches :: Int→ Regex→ Gen String
randomMatches m e′

| m 6 0 = return []
| otherwise = li�M2 (++) (randomMatch e′)
(randomMatches (m − 1) e′)

�e algorithm for generating random strings that aren’t accepted
by a RE is similarly de�ned and omi�ed for brevity.

Properties considered. In order to verify if the de�ned semantics
is correct, we need to check the following properties:
• Our semantics accepts only and all the strings in the lan-

guage described by the input RE: we test this property by
generating random strings that should be accepted and
strings that must be rejected by a random RE.

• Our semantics generates valid parsing evidence: the bit-
codes produced as result have the following properties: 1)
the bit-codes can be parsed into a valid parse tree t for the

Towards certified virtual machine-based regular expression parsing SBLP 2018, September 20–21, 2018, SAO CARLOS, Brazil

random produced RE e , i.e. ` t : e holds ; 2) flat t = s and 3)
code e t = bs.

In addition to coding / decoding of parse trees, we need a function
which checks if a tree is indeed a parsing evidence for some RE
e . Function tc takes, as arguments, a parse tree t and a RE e and
veri�es if t is an evidence for e .
tc :: Tree→ Regex→ Bool
tc () ϵ = True
tc (Chr c) (Chr c′) = c ≡ c′

tc (t • t′) (e • e′) = tc t e ∧ tc t′ e′

tc (InL t) (e +) = tc t e
tc (InR t′) (+ e′) = tc t′ e′

tc (List ts) (Star e) = all (flip tc e) ts

Function tc is a implementation of parsing tree typing relation,
as speci�ed by the following result.
�eorem 4. For all tree t and RE e , ` t : e if, and only if, tc t e =
True.

Code coverage results. A�er running thousands of well-succeeded
tests, we gain a high degree of con�dence in the correctness of our
semantics, however, it is important to measure how much of our
code is covered by the test suite. We use the Haskell Program
Coverage tool (HPC) [14] to generate statistics about the execution
of our tests. Code coverage results are presented in Figure 5.

Figure 5. Code coverage results

Our test suite give us almost 100% of code coverage, which pro-
vides a strong evidence that our semantics is indeed correct. All top
level de�nitions and function alternatives are actually executed by
the test cases and just two expressions are marked as non-executed
by HPC.

5 Related work
Ierusalimschy [16] proposed the use of Parsing Expression Gram-
mars (PEGs) as a basis for pa�ern matching. He argued that pure
REs is a weak formalism for pa�ern-matching tasks: many interest-
ing pa�erns either are di�cult to to describe or cannot be described
by REs. He also said that the inherent non-determinism of REs
does not �t the need to capture speci�c parts of a match. Following
this proposal, he presented LPEG, a pa�ern-matching tool based on
PEGs for the Lua language. He argued that LPEG uni�es the ease
of use of pa�ern-matching tools with the full expressive power of
PEGs. He also presented a parsing machine (PM) that allows an
implementation of PEGs for pa�ern matching. In [22], Medeiros
et. al. presents informal correctness proofs of LPEG PM. While
such proofs represent a important step towards the correctness of
LPEG, there is no guarantee that LPEG implementation follows its
speci�cation.

In [24], Rathnayake and �ielecke formalized a VM implementa-
tion for RE matching using operational semantics. Speci�cally, they

derived a series of abstract machines, moving from the abstract
de�nition of matching to realistic machines. First, a continuation
is added to the operational semantics to describe what remains to
be matched a�er the current expression. Next, they represented
the expression as a data structure using pointers, which enables
redundant searches to be eliminated via testing for pointer equality.
Although their work has some similarities with ours (a VM-based
parsing of REs), they did not present any evidence or proofs that
their VM is correct.

Fischer, Huch and Wilke [11] developed a Haskell program for
matching REs. �e program is purely functional and it is overloaded
over arbitrary semirings, which solves the matching problem and
supports other applications like computing le�most longest match-
ings or the number of matchings. �eir program can also be used
for parsing every context-free language by taking advantage of
laziness. �eir developed program is based on an old technique to
turn REs into �nite automata, which makes it e�cient compared to
other similar approaches. One advantage of their implementation
over our proposal is that their approach works with context-free
languages, not only with REs purely. However, they did not present
any correctness proofs of their Haskell code.

Cox [6] said that viewing RE matching as executing a special
machine makes it possible to add new features just by the inclusion
of new machine instructions. He presented two di�erent ways
to implement a VM that executes a RE that has been compiled
into byte-codes: a recursive and a non-recursive backtracking im-
plementation, both in C programming language. Cox’s work on
VM-based RE parsing is poorly speci�ed: both the VM semantics
and the RE compilation process are described only informally and
no correctness guarantees is even mentioned.

Frisch and Cardelli [13] studied the theoretical problem of match-
ing a �at sequence against a type (RE): the result of the process is a
structured value of a given type. �eir contributions were in notic-
ing that: (1) A disambiguated result of parsing can be presented as
a data structure that does not contain ambiguities. (2) �ere are
problematic cases in parsing values of star types that need to be
disambiguated. (3) �e disambiguation strategy used in XDuce and
CDuce (two XML-oriented functional languages) pa�ern match-
ing can be characterized mathematically by what they call greedy
RE matching. (4) �ere is a linear time algorithm for the greedy
matching. �eir approach is di�erent since they want to axiomatize
abstractly the disambiguation policy, without providing an explicit
matching algorithm. �ey identify three notions of problematic
words, REs and values (which represent the ways to match words),
relate these three notions, and propose matching algorithms to deal
with the problematic case.

Ribeiro and Du Bois [25] described the formalization of a RE
parsing algorithm that produces a bit representation of its parse tree
in the dependently typed language Agda. �e algorithm computes
bit-codes using Brzozowski derivatives and they proved that the
produced codes are equivalent to parse trees ensuring soundness
and completeness with respect to an inductive RE semantics. �ey
included the certi�ed algorithm in a tool developed by themselves,
named verigrep, for RE-based search in the style of GNU grep.
While the authors provided formal proofs, their tool showed a
bad performance when compared with other approaches to RE
parsing. Besides, they did not prove that their algorithm follows
some disambiguation policy, like POSIX or greedy.

SBLP 2018, September 20–21, 2018, SAO CARLOS, Brazil Thales Antônio Delfino and Rodrigo Ribeiro

Nielsen and Henglein [23] showed how to generate a compact
bit-coded representation of a parse tree for a given RE e�ciently,
without explicitly constructing the parse tree �rst, by simplifying
the DFA-based parsing algorithm of Dubé and Feeley [8] to emit a
bit representation without explicitly materializing the parse tree
itself. �ey also showed that Frisch and Cardelli’s greedy RE pars-
ing algorithm [13] can be straightforwardly modi�ed to produce
bit codings directly. �ey implemented both solutions as well as
a backtracking parser and performed benchmark experiments to
measure their performance. �ey argued that bit codings are inter-
esting in their own right since they are typically not only smaller
than the parse tree, but also smaller than the string being parsed
and can be combined with other techniques for improved text com-
pression. As others related works, the authors did not present a
formal veri�cation of their implementations.

An algorithm for POSIX RE parsing is described in [26]. �e
main idea of the article is to adapt derivative parsing to construct
parse trees incrementally to solve both matching and submatching
for REs. In order to improve the e�ciency of the proposed algo-
rithm, Sulzmann et al. use a bit encoded representation of RE parse
trees. Textual proofs of correctness of the proposed algorithm are
presented in an appendix.

6 Conclusion
In this work, we presented a small-step operational semantics for
a virtual machine for RE parsing inspired on �ompson’s NFA
construction. Our semantics produces, as parsing evidence, bit-
codes which can be used to characterize which disambiguation
strategy is followed by the semantics. We use data-type derivatives
to represent evaluation contexts for RE. Such contexts are used to
decide how to �nish the execution of the RE on focus. We have
developed a prototype implementation of our semantics in Haskell
and use �ickCheck to verify its relevant properties with respect
to a simple implementation of RE parsing by Fisher et. al. [11].

Currently, we have a formalized interpreter of our semantics in
Coq proof assistant [4] available at project’s on-line repository [7].
We are working on formalizing the equivalence between the pro-
posed semantics and the standard RE inductive semantics.

As future work we intend to use our veri�ed semantics to build
a certi�ed tool for RE parsing, work on proofs that the semantics
follow a speci�c disambiguation strategy and investigate how other
algorithms (e.g. the Glushkov construction [15]) for converting a
RE into a �nite state machine could be expressed in terms of an
operational semantics.

Acknowledgements
We would like to thank Prof. Leonardo Vieira, Samuel Feitosa and the
anonymous reviewers for their valuable suggestions and comments
on early versions of this paper.

References
[1] Michael Gordon Abbo�, �orsten Altenkirch, Neil Ghani, and Conor McBride.

2003. Derivatives of Containers. In Typed Lambda Calculi and Applications, 6th
International Conference, TLCA 2003, Valencia, Spain, June 10-12, 2003, Proceedings.
(Lecture Notes in Computer Science), Martin Hofmann (Ed.), Vol. 2701. Springer,
16–30. h�ps://doi.org/10.1007/3-540-44904-3 2

[2] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. 1986. Compilers: Principles,
Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

[3] Andrea Asperti, Claudio Sacerdoti Coen, and Enrico Tassi. 2010. Regular
Expressions, au point. CoRR abs/1010.2604 (2010). arXiv:1010.2604 h�p:
//arxiv.org/abs/1010.2604

[4] Yves Bertot and Pierre Castran. 2010. Interactive �eorem Proving and Program
Development: Coq’Art �e Calculus of Inductive Constructions (1st ed.). Springer
Publishing Company, Incorporated.

[5] Koen Claessen and John Hughes. 2000. �ickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of the Fi�h ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00). ACM, New York,
NY, USA, 268–279.

[6] Russ Cox. 2009. Regular Expression Matching: the Virtual Machine Approach.
(2009). h�ps://swtch.com/

[7] �ales Del�no and Rodrigo Ribeiro. 2018. Towards certi�ed vir-
tual machine-based regular expression parsing — On-line repository.
h�ps://github.com/thalesad/regexvm. (2018).

[8] Danny Dubé and Marc Feeley. 2000. E�ciently Building a Parse Tree from a
Regular Expression. Acta Inf. 37, 2 (Oct. 2000), 121–144. h�ps://doi.org/10.1007/
s002360000037

[9] Ma�hias Felleisen, Robert Bruce Findler, and Ma�hew Fla�. 2009. Semantics
Engineering with PLT Redex (1st ed.). �e MIT Press.

[10] Denis Firsov and Tarmo Uustalu. 2013. Certi�ed Parsing of Regular Languages.
In Proceedings of the �ird International Conference on Certi�ed Programs and
Proofs - Volume 8307. Springer-Verlag New York, Inc., New York, NY, USA, 98–113.
h�ps://doi.org/10.1007/978-3-319-03545-1 7

[11] Sebastian Fischer, Frank Huch, and �omas Wilke. 2010. A play on regular
expressions. ACM SIGPLAN Notices 45, 9 (2010), 357. h�ps://doi.org/10.1145/
1932681.1863594

[12] Bryan Ford. 2004. Parsing Expression Grammars: A Recognition-based Syntactic
Foundation. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’04). ACM, New York, NY, USA,
111–122. h�ps://doi.org/10.1145/964001.964011

[13] Alain Frisch and Luca Cardelli. 2004. Greedy Regular Expression Matching.
ICALP 2004 - International Colloquium on Automata, Languages and Programming
3142 (2004), 618–629.

[14] Andy Gill and Colin Runciman. 2007. Haskell Program Coverage. In Proceedings
of the ACM SIGPLAN Workshop on Haskell Workshop (Haskell ’07). ACM, New
York, NY, USA, 1–12. h�ps://doi.org/10.1145/1291201.1291203

[15] Victor M. Glushkov. 1961. �e Abstract �eory of Automata. Russian Mathemat-
ical Surveys 16, 5 (1961), 1–53.

[16] Roberto Ierusalimschy. 2009. A text pa�ernmatching tool based on parsing
expression grammars. So�ware - Practice and Experience (2009). h�ps://doi.org/
10.1002/spe.892

[17] Donald E. Knuth. 1971. Top-down Syntax Analysis. Acta Inf. 1, 2 (June 1971),
79–110. h�ps://doi.org/10.1007/BF00289517

[18] Miran Lipovaca. 2011. Learn You a Haskell for Great Good!: A Beginner’s Guide
(1st ed.). No Starch Press, San Francisco, CA, USA.

[19] A. Loh. [n. d.]. Typese�ing Haskell and more with lhs2TeX. ([n. d.]). h�p:
//www.cs.uu.nl/∼

[20] Raul Lopes, Rodrigo Ribeiro, and Carlos Camarão. 2016. Certi�ed Derivative-
Based Parsing of Regular Expressions. In Programming Languages — Lecture
Notes in Computer Science 9889. Springer, 95–109.

[21] Conor McBride. 2008. Clowns to the le� of me, jokers to the right (pearl):
dissecting data structures. In Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, January 7-12, 2008. 287–295. h�ps://doi.org/10.1145/1328438.
1328474

[22] Sérgio Medeiros and Roberto Ierusalimschy. 2008. A parsing machine for PEGs.
Proceedings of the 2008 symposium on Dynamic languages - DLS ’08 (2008), 1–12.
h�ps://doi.org/10.1145/1408681.1408683

[23] Lasse Nielsen and Fritz Henglein. 2011. Bit-coded Regular Expression Parsing.
In Language and Automata �eory and Applications, Adrian-Horia Dediu, Shun-
suke Inenaga, and Carlos Martı́n-Vide (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 402–413.

[24] Asiri Rathnayake and Hayo �ielecke. 2011. Regular Expression Matching and
Operational Semantics. Electronic Proceedings in �eoretical Computer Science 62,
Sos (2011), 31–45. h�ps://doi.org/10.4204/EPTCS.62.3 arXiv:1108.3126

[25] Rodrigo Ribeiro and André Du Bois. 2017. Certi�ed Bit-Coded Regular Expression
Parsing. Proceedings of the 21st Brazilian Symposium on Programming Languages
- SBLP 2017 (2017), 1–8. h�p://dl.acm.org/citation.cfm?doid=3125374.3125381

[26] Martin Sulzmann and Kenny Zhuo Ming Lu. 2014. POSIX Regular Expression
Parsing with Derivatives. In Functional and Logic Programming - 12th Interna-
tional Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6, 2014. Proceedings
(Lecture Notes in Computer Science), Michael Codish and Eijiro Sumii (Eds.),
Vol. 8475. Springer, 203–220. h�ps://doi.org/10.1007/978-3-319-07151-0 13

[27] Ken �ompson. 1968. Programming Techniques: Regular Expression Search
Algorithm. Commun. ACM 11, 6 (June 1968), 419–422.

https://doi.org/10.1007/3-540-44904-3_2
http://arxiv.org/abs/1010.2604
http://arxiv.org/abs/1010.2604
http://arxiv.org/abs/1010.2604
https://swtch.com/
https://doi.org/10.1007/s002360000037
https://doi.org/10.1007/s002360000037
https://doi.org/10.1007/978-3-319-03545-1_7
https://doi.org/10.1145/1932681.1863594
https://doi.org/10.1145/1932681.1863594
https://doi.org/10.1145/964001.964011
https://doi.org/10.1145/1291201.1291203
https://doi.org/10.1002/spe.892
https://doi.org/10.1002/spe.892
https://doi.org/10.1007/BF00289517
http://www.cs.uu.nl/~
http://www.cs.uu.nl/~
https://doi.org/10.1145/1328438.1328474
https://doi.org/10.1145/1328438.1328474
https://doi.org/10.1145/1408681.1408683
https://doi.org/10.4204/EPTCS.62.3
http://arxiv.org/abs/1108.3126
http://dl.acm.org/citation.cfm?doid=3125374.3125381
https://doi.org/10.1007/978-3-319-07151-0_13

	Abstract
	1 Introduction
	2 Background
	2.1 Regular expressions: syntax and semantics
	2.2 RE parsing and bit-coded parse trees
	2.3 Thompson NFA construction
	2.4 Data-type derivatives

	3 Proposed semantics
	4 Implementation details
	4.1 Test suite

	5 Related work
	6 Conclusion
	References

