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Abstract This paper explores an approach for allowing type classes to
be optionally declared by programmers, i.e. programmers can overload
symbols without declaring their types in type classes.

The type of an overloaded symbol is, if not explicitly defined in a type
class, automatically determined from the anti-unification of instance
types defined for the symbol in the relevant module.

This depends on a modularization of instance visibility, as well as on a
redefinition of Haskell’s ambiguity rule. The paper presents the modifica-
tions to Haskell’s module system that are necessary for allowing instances
to have a modular scope, based on previous work by the authors. The
definition of the type of overloaded symbols as the anti-unification of
available instance types and the redefined ambiguity rule are also based
on previous works by the authors.

The added flexibility to Haskell-style of overloading is illustrated by
defining a type system and by showing how overloaded record fields can
be easily allowed with such a type system.

1 Introduction

This paper proposes an approach for allowing symbols to be overloaded in Haskell
without explicitly declaring their types in type classes. For this, modifications
to Haskell’s module system are required so that instances have a modular scope,
as well as a redefinition of Haskell’s ambiguity rule.

The proposed approach is based on the following ideas:

1. As usual, the type of an overloaded symbol is a constrained type of the form
∀a.C ⇒ τ , where C is a set of constraints and τ is a simple type; a constraint
is a class name followed by a sequence of type variables.

2. An overloaded symbol x can be defined by instance declarations of the form
instance x = e, without explicitly declaring its type in a type class.



3. The type of x is automatically determined from the anti-unification of the
instance types for x that are visible in the relevant module, by creating a
type class with a single member (x). The algorithm used for computing the
type of x is presented in Section 3.

4. Simple modifications to Haskell’s module system are required so that in-
stances have a modular scope. This is based on previous work by the authors
which is summarized in Section 5.

5. Also, a redefinition of Haskell’s ambiguity rule is required, as discussed in
Section 4.

The proposed approach is formalized in Section 6, where a type system for a
core-Haskell language where type classes can be optionally declared is presented.
Modularized instance scopes with a revised ambiguity rule and optional type
classes may also avoid the use of qualified imports (as used e.g. in the classy-
prelude, used in e.g. Yesod [15]).

The added flexibility to Haskell-style of overloading is illustrated by present-
ing a simple implementation for overloaded record fields based on the proposed
approach (cf. Section 7).

Related work is discussed in Section 8 and Section 9 concludes.
A prototype implementation of a type inference algorithm for Haskell sup-

porting overloading without the need of defining a type class is available [18].

2 Preliminaries

This section introduces basic definitions and notations. Meta-variable usage and
the syntax of types are given in Figure 1.

Class Name A
Type variable a, b
Type constructor T
Simple Constraint π ::= Aτ
Set of Simple Constraints C
Constraint θ ::= ∀ a.C ⇒ π
Simple Type τ, ρ ::= a | T | τ τ ′
Constrained Type δ ::= C ⇒ τ
Type σ ::= ∀ a. δ
Substitution φ

Figure 1. Syntax of Types

For simplicity and following common practice, kinds are not considered in
type expressions and type expressions which are not simple types are not explic-
itly distinguished from simple types.



As usual, we assume the existence of type constructor →, that is written as
an infix operator (τ → τ ′). A type ∀ a.C ⇒ τ is equivalent to C ⇒ τ if a is
empty and, similarly, C ⇒ τ is equivalent to τ if C is empty.

The set of type variables occurring in X is denoted by tv(X), where X can
be a type, a constraint, sets of types or constraints, or a typing context.

Notation xn, or simply x, is used throughout this paper to denote the se-
quence x1 · · ·xn, or x1, . . . , xn, or x1; . . . ;xn, depending on the context where
it is used, where n ≥ 0, and x’s can be either type variables, or mappings, or
bindings etc. When used in a context of a set, it denotes {x1, . . . , xn}.

A substitution φ is a function from type variables to simple type expressions.
The identity substitution is denoted by id . φ(σ) (or simply φσ) represents the
capture-free operation of substituting φ(a) for each free occurrence of a in σ.

We overload the substitution application on constraints, constraint sets and
sets of types. Definition of application on these elements is straightforward. The
symbol ◦ denotes function composition and dom(φ) = {α | φ(α) 6= α}.

The notation φ[a 7→ τ n] denotes the substitution φ′ such that φ′(b) = τi if
b = ai, for i = 1, ..., n, otherwise φ(b). Also, [a 7→ τ ] = id [a 7→ τ n].

3 Anti-unification of instance types

A simple type τ is a generalization of a set of simple types τ n if there exist
substitutions φ

n
such that φi(τ) = τi, for i = 1, . . . , n. For example, a0 → a0,

a1 → a2, and a3 are generalizations of {Int → Int ,Float → Float}.5
We say that τ is less general than τ ′, written τ ≤ τ ′, if there exist a substi-

tution φ such that φ(τ ′) = τ . For example, a0 → a0 ≤ a1 → a2 ≤ a3.
The least common generalization (lcg) of a set of types S and a type τ holds,

written as lcgr(S, τ), if, for all generalizations τ ′ of S we have τ ≤ τ ′.
The concept of least common generalization was studied by Gordon Plotkin

[16,17], that defined a function for constructing a generalization of two symbolic
expressions. In Figure 2, we define function lcg , which returns a lcg of a finite
set of simple types S, by recursion on the structure of S, using function lcg ′ to
compute the generalization of two simple types. For two types τ1 and τ2 the idea
is to recursively traverse the structure of both types using a finite map to store
previously generalized types. Whenever we find two different type constructors,
we search on the finite map if they have been previously generalized. If this is
the case, the previous generalization is returned. If these two type constructors
are not in the finite map, we insert them using a fresh type variable as their
generalization and return this new variable.

As an example of the use of lcg , consider the following types (of functions
map on lists and trees, respectively):

(a→ b) → [a] → [b]
(a→ b) → Tree a → Tree b

5 A generalization is also called a (first-order) anti-unification [2].



lcg(S) = τ where (τ, φ) = lcg ′(S, id), for some φ

lcg ′({τ}, φ) = (τ, φ)

lcg ′({τ1} ∪ S, φ) = lcg ′′(τ1, τ
′, φ′) where (τ ′, φ′) = lcg′(S, φ)

lcg ′′(T τ n, T ′ ρm, φ) =
if φ(a) = (T τ n, T ′ ρm) for some a then (a, φ)
else

if n 6= m then (b, φ[b 7→ (T τ n, T ′ ρm)])
where b is a fresh type variable

else (ψ τ ′
n
, φn)

where (ψ, φ0) =

{
(T, φ) if T = T ′

(a, φ [a 7→ (T, T ′)]) otherwise, a is fresh

(τ ′i , φi) = lcg′′(τi, ρi, φi−1), for i = 1, . . . , n

Figure 2. Least Common Generalization

A call of lcg for a set with these types yields type (a → b) → c a → c b,
where c is a generalization of type constructors [] and Tree (for c to be used in
c b, mapping c 7→ ([],Tree) is saved in parameter φ of lcg ′′, to be reused).

The following theorems guarantee correctness of function lcg :

Theorem 1 (Soundness of lcg) For all (sets of simple types) S, we have that
lcg(S) yields a generalization of S.

Theorem 2 (Completeness of lcg) For all (sets of simple types) S, we have
that lcgr(S, lcg(S)) holds (i.e. lcg(S) is a generalization of S) and, for any τ
that is a generalization of S, we have that lcg(S) ≤ τ .

Theorem 3 (Compositionality of lcg) For all non-empty (sets of simple types)
S, S′, we have that lcg(lcg(S), lcg(S′)) = lcg(S ∪ S′).

Theorem 4 (Uniqueness of lcg) For all (sets of simple types) S, we have that
lcg(S) is unique, up to variable renaming.

The proofs use straighforward induction on the number and structural com-
plexity of elements of S.

4 Ambiguity Rule

The versions of Haskell supported by GHC [8] — the prevailing Haskell com-
piler — are becoming complex, to the point of affecting the view of Haskell as



the best choice for general-purpose software development. A basic issue in this
regard is the need of extending the language to allow multiple parameter type
classes (MPTCs). This extension is thought to require additional mechanisms,
such as functional dependencies [10] or type families [3]. In another paper [1],
we have shown that the introduction of MPTCs in the language can be done
without the need of additional mechanisms: a simplifying change is sufficient, to
Haskell’s ambiguity rule. Interested readers are referred to [1]. The main ideas
are summarized below.

In (GHC) Haskell, ambiguity is a property of a type: a type ∀ a.C ⇒ τ is
ambiguous if there exists a type variable that occurs in the set of constraints (C)
that is not uniquely determined from the set of type variables that occur in the
simple type (τ). This unique determination is such that, for each type variable
a that occurs in C but not in τ there must exist a functional dependency b 7→ a
for some b in τ (or a similar unique determination specified via type families).
Notation b 7→ a is used, instead of b → a, to avoid confusion with the notation
used to denote functional types.

We adopt a slightly modified definition for ambiguity, refered here as ex-
pression ambiguity6, that is based on the following similar property of variable
reachability, which is independent of functional dependencies and type families:

Definition 1 (Reachable Variable) A variable a ∈ tv(C) is reachable from a
set of type variables V if a ∈ V or if a ∈ π for some π ∈ C such that there exists
b ∈ tv(π) such that b is reachable. a ∈ tv(C) is unreachable if it is not reachable.
The set of reachable type variables of constraint set C from V is denoted by
reachableVars(C, V ).

For example, in (A1 a b,A2 a)⇒ b, type variable a is reachable from the set
of type variables in b, because a occurs in constraint A1 a b, and b is reachable.
Similarly, if C = (A1 a b,A2 b c, A3 c), then c is reachable from {a}.

The presence of unreachable variables in a constraint π ∈ C, on a type
σ = C ⇒ τ , characterizes overloading resolution; in other words, it means that
overloading for π is resolved — there is no context in which an expression with
such a type (σ) could be placed that could instantiate any of the unreachable
variables (occurring in π). However, the presence of unreachable variables does
not necessarily imply ambiguity. Ambiguity is a property of an expression, not
of a type. It depends on the context in which the expression occurs, and on
entailment of the constraints on the expression’s type. Also, because of Haskell’s
open-world style of overloading, ambiguity can be checked only when there exist
unreachable variables; when there are no unreachable variables, overloading is
yet unresolved.

Entailment of constraints and its algorithmic (functional) counterpart are
well-known in the Haskell world (see e.g. [14,19,1]).

Informally, a set of constraints C is entailed (or satisfied) in a program P if
there exists a substitution φ such that φ(C) is contained in the set of instance

6 In [1] it is called delayed closure ambiguity .



declarations of P , or is transitively implied by the set of class and instance
declarations occurring in P . For a formal definition, see e.g. [14,1]. In this case
we say that C is entailed by φ.

For example, Eq [[Integer]] is entailed if we have instances Eq Integer and
Eq a => Eq [a], visible in the context where an expression whose type has a
constraint Eq [[Integer]] occurs.

If overloading is resolved for a constraint π occurring in a type σ = π,C ⇒ τ
then exactly one of the following holds:

– π is entailed by a single instance; in this case a type simplification (also
called “improvement”) occurs: σ can be simplified to C ⇒ τ ;

– π is entailed by two or more instances; in this case we have a type error:
ambiguity;

– π is not entailed (by any instance); in this case we have also a type error:
unsatisfiability.

Note that variables in a single constraint are either all reachable or all un-
reachable. If they are unreachable, either the constraint can be removed, in the
case of single entailment, or there is a type error (either ambiguity, in the case
of two or more entailments, or unsatisfiability, in the case of no entailment).

Instead of being dependent on the specification of functional dependencies
or type families, ambiguity depends on the existence of (two or more) instances
in a program context when overloading is resolved for a constraint on the type
of an expression.

The possibility of a modular control of the visibility of instance definitions
conforms to this simplifying change. This is the subject of Section 5.

5 Modularization of Instances

This section presents the simple modifications to Haskell’s module system that
are necessary to allow instances to have a modular scope (we do not attempt
to discuss any major revision to Haskell’s module system). This is based on
previous work presented in [13], that allows a modular control of the visibility
of instance definitions.

Essentially, import and export clauses can specify, instead of just names,
also instance A τ , where τ is a (non-empty) sequence of types and A is a class
name:

module M (instance A τ , . . . ) where . . .

specifies that the instance of τ for class A is exported in module M .

import M (instance A τ , . . . )

specifies that the instance of τ for class A is imported from M , in the module
where the import clause occurs.

The single additional rule to the work presented in [13] that enables type
classes to be optionally declared by programmers is the following:



Definition 2 (Type of overloaded variable) If the type of an overloaded vari-
able — i.e. a variable that is introduced in an instance definition — is not
explicitly annotated in a type class declaration, then the variable’s type is the
anti-unification of instance types defined for the variable in the current module;
otherwise, it is the annotated type.

5.1 Pros and Cons of Instance Modularization

Among the advantages of this simple change, we cite (following [13]):

– Programmers have better control of which entities are necessary and should
be in the scope of each module in a program.

– It is possible to define and use more than one instance for the same type in
a program.

– Problems with orphan instances do not occur (orphan instances are instances
defined in a module where neither the definition of the data type nor the
definition of the type class occur). For example, distinct instances of Either
for class Monad , say one from package mtl and another from transformers,
can be used in a program.

– The introduction of newtypes, as well as the use of functions that include
additional (-by) parameters, such as e.g. the (first) parameter of function
sortBy in module Data.List can be avoided.

With instance modularization, programmers need to be aware of which enti-
ties are exported and imported — i.e. which entities are visible in the scope of
a module — and their types, in particular whether they are or not overloaded.
A simple change like a type annotation for a variable exported from a module,
can lead to a change in the semantics of using this variable in another module.

Instance modularization and the rule of expression ambiguity, that consid-
ers the context where an expression occurs to detect whether an expression is
ambiguous or not, has profound consequences. Consider, for example:

module M where

class Show t ...

class Read t ...

instance Show Int ...

instance Read Int ...

f = show . read

module N where

import M
instance Read Bool ...

instance Show Bool ...

g = f "123"

The definition of f in module M is not well-typed in Haskell, since type
(Show a, Read a) ⇒ String is ambiguous. In our approach (i.e. considering



ambiguity as a property of an expression, not of a type), the definition of f in
module M is well-typed, because constraints (Show a, Read a) can be removed;
these can be removed because there exists a single instance, in module M , for
each constraint, that entails it. As a result, f has type String→ String . Its use in
module N is (then) also well-typed. That means: f ’s semantics is a function that
receives a value of type String and returns a value of type String , according to
the definition of f given in module M . The semantics of an expression involves
passing a (dictionary) value that is given in the context of usage only if the
expression has a constrained type.

6 Mini-Haskell with Optional Type Classes

In this section we present a type system for mini-Haskell, where type class dec-
laration is optional. Programmers can overload symbols without declaring their
types in type classes. The type of an overloaded symbol is, if not explicitly de-
fined in a type class, based on the anti-unification of instance types defined for
the symbol in the relevant module.

Figure 3 shows the context-free syntax of mini-Haskell: expressions, modules
and programs. An instance can be specified without specifying a type class,
cf. second option (after |) in Instance Declaration in Figure 3.

For simplicity, imported and exported variables and instances must be ex-
plicitly indicated, e.g. we do not include notations for exporting and importing
all variables of a module.

Multi-parameter type classes are supported. In this paper we do not consider
recursivity, neither in let-bindings nor in instance declarations.

Module Name M,N
Program Theory P,Q
Variable x, y
Expression e ::= x | λx. e | e e′ | let x = e in e′

Program p ::= m

Module m ::= moduleM (X) where I;D
Export clause X ::= ι
Import clause I ::= import M (X)
Item ι ::= x | instance A τ
Declaration D ::= classDecl | instDecl | B
Class Declaration classDecl ::= class C ⇒ A a where x : δ

Instance Declaration instDecl ::= instance C ⇒ A τ where B | instance B
Binding B ::= x = e

Figure 3. Context-free syntax of mini-Haskell



A program theory P is a set of axioms of first-order logic, generated from
class and instance declarations occurring in the program, of the form C ⇒ π,
where C is a set of simple constraints and π is a simple constraint (cf. Figure 3).

Entailment of a set of constraints C by a program theory P is written as
P `e C (see e.g. [1]).

Typing contexts are indexed by module names. Γ (M) gives a function on
variable names to types: Γ (M)(x) gives the type of x in module M and typing
context Γ . The notation (Γ (M), x 7→ σ) is used to denote the typing context Γ ′

that differs from Γ only by mapping x to σ in module M , i.e. : Γ ′(M ′)(x′) = σ
if M ′ = M and x′ = x, otherwise Γ ′(M ′)(x′) = Γ (M ′)(x′).

A special, empty module name, denoted by [], is used for names exported by
modules, to control the scope of names that use import and export clauses. Also,
a reserved name (self) is used to refer to the current module, being defined and
used in the type system and relations to control import and export clauses.

It is not necessary to store multiple instance types for the same variable in
a typing context, neither it is necessary to use instance types in typing contexts
(they are needed only in the program theory); only the lcg of instance types
is used, because of lcg compositionality (theorem 3). When a new instance is
declared, if it is an instance of a declared class the type system guarantees that
each member is an instance of the type declared in the type class; otherwise
(i.e. it is the single member of an undeclared class), its (new) type is given by
the lcg of the existing type (an existing lcg of previous instance types) and the
instance type.

We consider that a constraint set C ′ can be removed from a constrained type
C,C ′ ⇒ τ if and only if overloading for C ′ has been resolved and there exists a
single satisfying substitution for C ′[1].

A declarative type system for core-Haskell is presented in Figure 4, using
rules of the form P ;Γ `0 e : δ, which means that e has type δ in typing context
Γ and program theory P .

Γ (self)(x) = (∀ a.C ⇒ τ) P `e φC dom(φ) ⊆ a
P ;Γ `0 x : φ(C ⇒ τ)

(VAR)

(Γ (self), x 7→ τ) `0 e : C ⇒ τ ′

P ;Γ `0 λx. e : C ⇒ τ → τ ′
(ABS)

P ;Γ `0 e : C ⇒ τ ′ → τ P ;Γ `0 e′ : C′ ⇒ τ ′

V = tv(τ) ∪ tv(C) (C ⊕V C′) >>P C′′

P ;Γ `0 e e′ : C′′ ⇒ τ
(APP)

P ;Γ `0 e : C ⇒ τ C >>P C′′

gen(C′′ ⇒ τ, σ, tv(Γ )) P ; (Γ (self), x 7→ σ) `0 e′ : C′ ⇒ τ ′

P ;Γ `0 let x = e in e′ : C′ ⇒ τ ′
(LET)

Figure 4. Core-Haskell Type System



Rule (LET) performs constraint set simplification before type generalization.
Constraint set simplification >>P is a relation on constraints, defined as a compo-
sition of improvement and context reduction [1]. gen(δ, σ, V ) holds if σ = ∀ a. δ,
where a = tv(δ) − V ; similarly, for constraints, gen(C ⇒ π, θ, V ) holds if
θ = ∀ a.C ⇒ π, where a = tv(C ⇒ π)− V .

C⊕V C
′ denotes the constraint set obtained by adding to C constraints from

D that have type variables reachable from V :

C ⊕V C ′ = C ∪ {π ∈ C ′ | tv(π) ∩ reachableVars(C ′, V ) 6= ∅}

In rule (APP), the constraints on the type of the result are those that occur in
the function type plus not all constraints that occur in the type of the argument
but only those that have variables reachable from the set of variables that occur
in the simple type of the result or in the constraint set on the function type
(cf. Definition 1). This allows, for example, to eliminate constraints on the type
of the following expressions, where o is any expression, with a possibly non-empty
set of constraints on its type: flip const o (where const has type ∀a, b. a→ b→ a
and flip has type ∀a, b, c. (a → b → c) → b → a → c), which should denote an
identity function, and fst (e, o), which should have the same denotation as e.

The extension of core-Haskell to mini-Haskell, which allows (optional) type
classes, modules and modularized instance declarations, is presented in Figures
5 through 7. Rule (MOD), in Figure 5, uses relations (`⇓) and (`X⇑ ), which are
defined separately, for clarity, in Figures 6 and 7.

The import relation Γ `⇓ I : Γ ′ yields a typing context (Γ ′) from a typing
context (Γ ) and a sequence of import clauses (I).

Relation P ;Γ `X⇑ D : (E,P ′, Γ ′) is used for specifying the types of a sequence
of bindings, from a typing context (Γ ), a program theory (P ) and a set of
exported items (X); it yields the set (E) of exported variables with their types,
together with both i) a new typing context (Γ ′), modified to contain elements of
E, so that Γ ′([]) contains the types of each x ∈ E, and ii) a new program theory
(P ′), updated from class and instance declarations. Relation (`0) is used to check
that expressions of core-Haskell that occur in declarations are well-typed.

There must exist a sequence of derivations for typing a sequence of modules
that composes a program that starts from an empty typing context, or from a
typing context that corresponds to predefined library modules. Recursive mod-
ules are not treated in this paper.

The first and second rules in Figure 7 specify the bindigs generated by stan-
dard Haskell type classes and instance declarations, respectively. For simplicity,
we omit special rules for validity of type class and instance declarations (see [8]),
that are not relevant here (for example, that the class hierachy is acyclic).

Γ0 `⇓ I : Γ P ;Γ `X⇑ D : (E,P ′, Γ ′)

P ;Γ0 ` module M (X) where I;D : (E,P ′, Γ ′)
(MOD)

Figure 5. Mini-Haskell module rule



Γ ′(M)(x) =


Γ ([])(x) if M = self and, for some 1 ≤ k ≤ n,

x= ιk or (ιk =instance A τ , x is a member of class A)
Γ (M)(x) otherwise

Γ `⇓ import M ( ιn ) : Γ ′

Γ0 `⇓ import M ( ι ) : Γ Γ `⇓ I : Γ ′

Γ0 `⇓ import M ( ι ); I : Γ ′

Figure 6. Import relation

Q;Γ `X⇑ D : (E,Q′, Γ ′) Q = P ∪
{
{C ⇒ A a} if C 6= ∅
∅ otherwise

Γ (M)(x) =

{
δk if x = xk, 1 ≤ k ≤ n, and M ∈ {self, []}
Γ0(M)(x) otherwise

P ;Γ0 `X⇑ class C ⇒ A a where x : δ
n
;D : (E,Q′, Γ ′)

P `e φ(C ⇒ π) gen(φ(C ⇒ π), θ, tv(Γ )) Q = P ∪ {θ}
Q;Γ `0 ei : δi δi = φ

(
Γ ([])(xi)

)
, for i = 1, . . . , n

Q;Γ `X
′
⇑ D : (E,Q′, Γ ′)

(X ′, E′) =

{
(X − {ι}, E ∪ {x : δ

n}) if ι ∈ X, ι = instance φ(C ⇒ π)
(X,E) otherwise

P ;Γ `X⇑ instance φ(C ⇒ π) where x = en;D : (E′, Q′, Γ ′)

A is the class name generated for x

P ;Γ0 `0 e : C ⇒ τ gen(C ⇒ Aτ, θ, tv(Γ0)) Q = P ∪ {θ}
Q;Γ `X

′
⇑ D : (E,Q′, Γ ′) lcgr({τ} ∪ {Γ0(self)(x)}, τ ′)

P ;Γ `X
′
⇑ D : (E,Q′, Γ ′)

Γ (M)(y) =

{
A τ ′ ⇒ τ ′ if y = x, (M = self or (M = [], x ∈ X))
Γ0(M)(y) otherwise

(X ′, E′) =

{
(X − {ι}, E ∪ {x : C ⇒ τ}) if ι ∈ X, ι = instance C ⇒ Aτ
(X,E), otherwise

P ;Γ0 `X⇑ instance x = e;D : (E′, Q′, Γ ′)

P ;Γ0 `0 e : C ⇒ τ gen(C ⇒ τ, σ, tv(Γ0))

P ;Γ `X⇑ D : (E,P ′, Γ ′)

Γ (M)(y) =

{
σ if y = x, (M = self or (M = [], x ∈ X))
Γ0(M)(y) otherwise

(X ′, E′) =

{
(X − {x}, E ∪ {x : C ⇒ τ}) if x ∈ X
(X,E) otherwise

P ;Γ0 `X⇑ x = e;D : (E′, P ′, Γ ′)

Figure 7. Mini-Haskell rules for declarations



The third rule accounts for instance declarations of an overloaded symbol
x whose type is not explicitly specified in a type class. As stated previously,
the type τ ′ of x is the least common generalization of the set of types {τ} ∪
{Γ0(self)(x)}, where τ is the type of the expression in the current instance
declaration for x and Γ0(self)(x) is the type of x in the current type environment
(previously computed from other instance declarations for x that are visible in
Γ0). This rule is based on Theorem 3.

7 Records with overloaded fields

In this section we describe how the possibility of overloading symbols without
the need of declaring type classes allows record fields to be overloaded, in an easy
way. The idea is simply to transform any access to an overloaded record field
into an automatically created instance of an undeclared type class, and similarly
for any use of a record update of an overloaded record field.

There are certainly design decisions to be made, but below we illustrate the
proposal by creating instance of get fieldname and update fieldname whenever
there exists, respectively, an access of and an update to an overloaded record
field, where fieldname is the name of the overloaded record field.

Consider a simple example of overloaded record fields:

data Person = Person { id :: Int, name :: String }
data Address = Address { id :: Int, address :: String }

The overloaded id fields of types Person and Address have the following
types:

id :: Person → Int
id :: Address → Int

In our approach, we can automatically create following instance declarations
without declared type classes, that are part of a record field name space that is
distinct from the variable name space:

get id :: Person → Int
instance get id (Person id ) = id

get id :: Address → Int
instance get id (Address id ) = id

If record field updating is used, updating functions are created, as illustrated
below. Consider for example that record field updating is used as follows:



update id :: Person → Int → Person
instance update id (Person id name) new id = Person new id name

update id :: Address → Int → Address
instance update id (Address id address) new id = Address new id address

Given any expression p of of type Person, any use of (p { id = new id})
could then be translated to (update id p new id). Similarly, given any expres-
sion a of type Address, any use of a { id = new id} could then be translated
to update id a new id .

8 Related Work

Haskell type system has been extended with several advanced typing features
such as functional dependencies [10], type families [3] and GADTs [4], just to
name a few. To the best of our knowledge, there’s no previous work on optional
declaration of type classes. In this section, we summarize some recent Haskell
type system extensions.

Functional dependencies (FDs) were introduced by Mark Jones as a way to
specify type class parameter dependencies in order to avoid ambiguity and to
improve inferred types in the context of MPTCs. FDs where also used to support
some form of type level programming [9] and to define heterogeneous lists and
extensible records [11].

Type families [3] (TFs) where introduced as a “more functional” alternative
to FDs (which is relational in nature). However, there are some issues with type
family injectivity [5] that motivated so-called closed type families and type family
dependencies [6]. Closed type families define all possible instances of a type
family a priori and type family dependencies allows the specification of parameter
dependencies, in a similar way of FDs. All type family related extensions cater
to better type improvement.

Datatype promotion [20,5] lifts user defined algebraic datatypes to kinds
and data constructors to types. It allows the definition of some dependently
typed programs. Singleton types and promoted functions [7] have been used
to automate (through Template Haskell) some constructions commonly needed
in Haskell-style dependent types. Lindley and McBride [12] describe some de-
pendently typed programs in Haskell and how to use GHC’s constraint solver
as a theorem prover to discharge proof obligations in an implementation of a
merge-sort algorithm.

Type level literals is an extension that complements datatype promotion to
numeric and string types. The Haskell prime proposal for overloaded record
fields relies on this extension to overload field access and update functions. Our
approach, based on optional declaration of type classes, does not demand type
promotion features and does not need to create an instance for each record field
(overloaded or not).



9 Conclusion

This paper has presented an approach for allowing type classes to be optionally
declared by programmers, so that programmers can overload symbols without
declaring their types in type classes.

An overloaded symbol is defined by means of an instance declaration that is
a normal declaration with keyword instance. The type of an overloaded symbol
is automatically determined from the anti-unification of instance types defined
for the symbol in the relevant module.

The approach depends on a modularization of instance visibility, as well as
on a redefinition of Haskell’s ambiguity rule. The paper presents the simple mod-
ifications to Haskell’s module system that are necessary for allowing instances
to have a modular scope.

We have provided an illustration of the added flexibility by showing how
overloaded record fields can be allowed in the presence of a presented type system
that supports instance modularization and instance definitions of undeclared
type classes that have a single member.
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Vasconcellos. Optional type classes for haskell — on-line repository.
https://github.com/rodrigogribeiro/mptc, 2016.

19. Peter Stuckey and Martin Sulzmann. A Theory of Overloading. ACM Trans.
Program. Lang. Syst., 27(6):1216–1269, November 2005.

20. Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios
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