
A Solution to Haskell’s Multi-Parameter Type Class Dilemma
Carlos Camarão1, Rodrigo Ribeiro1, Lucı́lia Figueiredo2, Cristiano Vasconcellos3

1Departamento de Ciência da Computação – Universidade Federal de Minas Gerais (UFMG)

2Departamento de Computação – Universidade Federal de Ouro Preto (UFOP)

3Universidade do Estado de Santa Catarina (UDESC)

{camarao,rribeiro,lucilia}@dcc.ufmg.br, damiani@joinville.udesc.br

Abstract. The introduction of multi-parameter type classes in Haskell has been
hindered because of problems associated to ambiguity, which occur due to the
lack of type specialization during type inference. This paper proposes a mini-
malist, simple solution to this problem, which requires only a small change to the
type inference algorithm and to what has been considered ambiguity in Haskell.
It does not depend on the use of programmer specified functional dependencies
between type class parameters nor any other extra mechanism, such as associ-
ated types. A type system and a type inference algorithm, sound and complete
with respect to the type system, are presented.

1. Introduction
The introduction of multi-parameter type classes (MPTCs) in Haskell has been hindered
because of problems associated to ambiguity, which occur due to the lack of type spe-
cialization during type inference. This paper proposes a minimalist and simple solution
to this problem, which does not require the use of functional dependencies between type
class parameters[M. Jones 2000] nor any other extra mechanism, such as associated types
[M. Chakravarty and others 2005b, M. Chakravarty and others 2005a]. No change to the
language syntax is needed, just a small change to the type inference algorithm and to what
has been considered ambiguity in Haskell.

Our proposal is based on the use of a so-called constraint set closure operation
(already employed nowadays by Haskell compilers with support for MPTCs), in order
to define an overloading resolution trigger condition, as part of type specialization (also
called “type improvement”) during type inference.

Section 2 describes the dilemma Haskell designers are facing nowadays, with re-
spect to the introduction of MPTCs to the language, and includes an informal presenta-
tion of our proposal. Section 3 formalizes our proposal, by defining a criterion for well-
formedness of types, including a syntatic characterization of type ambiguity. Sections 4
and 5 present respectively a type system and a type inference algorithm that is sound and
complete with respect to the type system. Section 6 concludes.

2. Haskell’s MPTC Dilemma
Type classes were introduced in the first version of Haskell, based on work by Wadler and
Blott [P. Wadler and S. Blott 1989, S. Blott 1991]. The original motivation was to allow
the definition and use of overloaded symbols, in particular equality and numeric opera-
tors. This was later extended, by allowing type class parameters to be type constructor

variables, in addition to type variables[M. Jones 1993, M. Jones 1995a]. This extension
allowed type classes such as, for example:

class Functor f where
fmap:: (a → b) → f a → f b

class Monad m where
return:: a → m a
(>>=):: m a → (a → m b) → m b

A further extension, still not incorporated in standard Haskell, allows defini-
tions of type classes to have more than one parameter. MPTCs were recognized as a
natural extension to Haskell’s single parameter type classes, early in the original pa-
per by Wadler and Blott[P. Wadler and S. Blott 1989] and subsequently by many others
(cf. e.g. [M. Jones 1992, K. Chen and others 1992]). However, the use of overloaded
symbols introduced in MPTCs was at first thought to introduce ambiguous types1.

Usually, an expression e is considered semantically ambiguous if two distinct de-
notations can be obtained for it, using a semantics defined inductively on the derivation
of a type for e[J. Mitchell 1996]; in other words, e is considered ambiguous if there exist
two or more typing derivations that give the same type and distinct denotations for e.

Example 1.

class F a b where
f:: a→ b

class O a where
o:: a

h = f o

The type of h in 1 should be (F a b,O a)⇒ b. The definition of h is re-
jected in Hugs[M. Jones and others 1998], giving rise to the error message “Unresolved
top level overloading” (for binding h, with outstanding context (F a b, O a)).
GHC[S. P. Jones and others 1998] accepts the definition, if run with compilation options

1Cf. e.g.[M. Jones 1995b]:

“. . . On the surface, these definitions seem quite reasonable, but we soon run into
difficulty if we try to use them. One of the first problems is that the type of the empty value
is ∀a.∀c. (c ∈ Collect(a)) ⇒ c, which is ambiguous in the sense that a type variable a
appears on the left of the⇒ symbol, but is not mentioned on the right. As a result, there
is no general way to determine the intended value of type a from the context in which
empty is used. In general, it is not possible to use any term with an ambiguous principal
type if we hope to provide a well-defined semantics for the language[M. Jones 1994].”

And [D. Duggan and J. Ophel 2002]:

“The issue addressed by this article, that has hindered the usefulness of MPTCs, is
the increased potential they introduce for ambiguous typing. “Ambiguity” refers to the
situation where there is a free type variable in the overload constraints accumulated during
type inference, with no occurrence of that type variable in the inferred type, and therefore
no possibility (apparently) that that type variable can be resolved further.”

that turn off the monomorphism restriction and allow multi-parameter type classes.2

The rule used in Haskell 98 to characterize well-formedness (in particular, unam-
biguity) of constrained types, with type class constraints and a single parameter, based
mainly on the work of Mark Jones[M. Jones 1994], gives the following syntactic crite-
rion for detecting ambiguity: a type ∀α. κ ⇒ τ , where α = tv(κ ⇒ τ), is ambiguous if
tv(κ) 6⊆ tv(τ). That is, a type is ambiguous if there exists at least one type variable in the
constraint set κ that does not occur in the simple (i.e. non-quantified and unconstrained)
type τ . In Haskell, κ, called a “context”, is a set of elements of the form C µ1 . . . µn,
where C is a class name and µ1, . . . , µn are simple types or type constructors, one for
each of the n parameters of class C. Naturally, tv(σ) denotes the set of free type variables
occurring in type σ, and similarly for constraints and sets thereof.

When type classes of more than one parameter are allowed, the above syntactic
characterization of ambiguity is not appropriate. We propose in this paper a simple rule,
that may be inserted easily in the type inference algorithm of current Haskell compilers,
that allows overloading of o, used in the definition of h, to be resolved, depending on the
program context where h is used.

GHC, since at least version 6.8, makes significant progress towards a character-
ization of well-formedness of constrained types in the context of MPTCs; GHC 6.10.3
User’s Guide says (section 7.8.1.1):

“GHC imposes the following restrictions on the constraints in a type
signature. Consider the type: forall tv1..tvn (c1, ...,cn)
=> type. . . . Each universally quantified type variable tvi must be reach-
able from type. A type variable a is “reachable” if it appears in the same
constraint as either a type variable free in the type, or another reachable
type variable.”

We propose that this “reachability condition” — formalized in subsection 3.3 — be used
not to indicate well-formedness of constrained types (i.e. to indicate whether types with
constraints are valid), but as a trigger condition for overloading resolution (which is de-
pendent on a test of satisfiability in the current context). When, after triggered by this
condition, overloading is found not to be resolved, we have ambiguity; otherwise, over-
loading is resolved — which means that there is a unique substitution that can be used to
specialize the constraint set to one that does not contain “unreachable” type variables —
and we do not have ambiguity (cf. subsection 3.6).

Nowadays, functional dependencies (FDs) are used often in Haskell extended with
MPTCs to constrain parameters of type classes in order to avoid what is considered to
be ambiguity. A FD lets the programmer state that one of the parameters of a MPTC
must be determined from one or more of the other parameters (see e.g. [M. Jones 2000]).
Consider, however, the following example (a modified version of an example from

2

f = show
g = \x → show x
h:: (Show a) ⇒ a → String
h = show
main = putStrLn (⊕ ’1’,⊕ True)

Haskell’s monomorphism restriction spec-
ifies that f cannot, whereas g and h can, be
used in the place of⊕ (the monomorphism
restriction forbids f to have a polymorphic,
constrained type).

www.haskell.org/haskellwiki/Functional dependencies), where a class Mult is
defined to support the definition of multiplication functions over different types.

Example 2.

data Vector = Vector Int Int deriving (Eq, Show)
data Matrix = Matrix Vector Vector deriving (Eq, Show)

class Mult a b c where
(*):: a → b → c

instance Mult Matrix Matrix Matrix where
(*) = ...

instance Mult Matrix Vector Matrix where
(*) = ...

-- code here declaring m1, m2, m3 of type Matrix
m = (m1 * m2) * m3

Hugs disallows m’s definition, generating, as in Example 1, type error Unresolved top-
level overloading. GHC gives the following type to m (as in Example 1, if compilation
options that turn off the monomorphism restriction and allow MPTCs are used):

m :: ∀c0, c1. (Mult Matrix Matrix c0, Mult c0 Matrix c1)⇒ c1

However, m cannot be used effectively: if we annotate type Matrix for m, a type error
is reported. This occurs because the type inferred for m includes constraints Mult Matrix
Matrix c0, Mult c0 Matrix Matrix, where c0 appears only in the constraint set, and
thus this type is considered ambiguous.

In Example 2, there is no means of specializing type variable c0 occurring in the
type of m to Matrix. No FD may be used in order to achieve such specialization, because
we do not have here a FD: a and b do not “determine” c, since for c = Matrix, we can
have a, b equal to either Matrix,Matrix or Matrix,Vector. This is an instance of a general
problem that occurs when there exist non-FDs between type class parameters.

We refer to the above as the MPTC ambiguity problem.

The dilemma faced by Haskell designers is that MPTCs should certainly be intro-
duced in Haskell but a solution to problems related to ambiguity, that arise due to lack
of type specialization, are thought to require FDs or another similar mechanism, such as
associated types[M. Chakravarty and others 2005b]. Yet, despite the added complexity
introduced in the language, they do not completely solve the problem, since there are
cases where there exist non-FDs between type class parameters (as shown in Example 2).

In our proposal, a constrained type k ⇒ τ is considered well-formed (in particu-
lar, non-ambiguous) if either all type variables that occur in κ are “reachable” from τ or,
if not, there is a single substitution S that may be applied to κ so that it becomes instanti-
ated to a constraint set having only reachable variables and whose constraints correspond
to the instance declarations available in the current context. According to this rule, type
m :: ∀c0. (Mult Matrix Matrix c0, Mult c0 Matrix Matrix)⇒Matrix would not be consid-
ered ambiguous, in the context of class and instance declarations of Example 2.

This establishes lack of reachability not as a syntactic ambiguity condition but
as a satisfiabilty testing trigger condition. In other words, lack of reachability “closes the
world”, as does the use of a FD, in cases where a FD can be established between type class
parameters. Closing the world means: perform a constraint set satisfiability test in order to
verify whether there exists a substitution that can be used to instantiated type variable(s)
occurring in constraints so as to resolve the overloading, with respect to definitions that
exist in the current typing context; if there exists only one such substitution, perform the
instantiation; if there exists none, report unsatisfiability, otherwise report ambiguity.

An important point, not addressed in this paper, is related to the need to intro-
duce restrictions in the definition of type classes and types of overloaded symbols in
order to guarantee decidability of type inference. For these, the reader is referred to
e.g. [G. Duck and others 2004, M. Sulzmann and others 2007]. Our proposal does not in-
troduce any extra complexity in this respect, when compared to FDs or an extra mecha-
nism introduced in the language for coping with the MPTC ambiguity problem.

3. Proposal

To formally present our proposal, we introduce first some notational conventions and
definitions (subsection 3.1). Well-formed programs and typing contexts are defined in
subsection 3.2. Subsections 3.3 and 3.4 define, respectively, the notions of constraint set
closure and constraint set satisfiability, which are used for the definition of well-formed
constrained types in subsection3.5. Our proposal to solve the MPTC ambiguity problem
is presented in subsection 3.6.

3.1. Preliminaries

We use a context-free syntax of type expressions with kinds and of possibly constrained
types, as presented in Figure 1, where meta-variable usage is also indicated.

Type expressions are needed, not simply types, because type expressions with
higher kinds are not types (for instance, c in type c e). We slightly abuse notation, in
Figure 1, writing µı→ı′1 µı2 to express that type expressions of the form µ1 µ2 must be such
that, letting ı be the kind of µ2, the kind of µ1 is of the form ı→ ı′ (for some kind ı′).

For simplicity and following common practice we call α and β just type variables,
instead of “type expression variables” (or “type or constructor variables”). To avoid clut-
ter, we usually do not write their kinds of type expressions. However, we are careful in

Kind ı ::= ? | ı→ ı′

Simple type expression µ ::= αı | T ı | µı→ı′1 µı2
Simple type τ ≡ µ?

Constraint δ ::= C µ
Type σ ::= τ | κ⇒ τ | ∀α. σ

Class name C Type constructor T
Type expression variable α, β Constraint set κ

Figure 1: Context-free syntax of types and their kinds, and meta-variable usage

distiguishing between the use of letters µ — which represent simple type expressions —
and τ — which indicate simple types.

We use x as an abbreviation for any sequence of elements in the set {x1, . . . , xn},
for some n ≥ 0; thus ∀α. σ = ∀α1. . . . ∀αn. σ. We let (∀α. ∅ ⇒ τ) = ∀α. τ .

A substitution S is a kind-preserving function from type variables to simple
type expressions. The identity substitution is denoted by id and dom(S) is defined by
dom(S) = {α | Sα 6= α}. Sσ represents the capture-free operation of substituting Sα
for each free occurrence of type variable α in σ. For simplicity, Sσ is sometimes written
as [α

ıj
j := τ

ıj
j]j=1..nσ, where dom(S) = {αıjj }j=1..n and Sαıjj = τ

ıj
j , for j = 1, . . . , n.

3.2. Programs and Typing Contexts

The actual form of programs is not of much interest for us here. The important point
is just that they contain global class and instance declarations that introduce class and
instance constraints in a global typing context Γ of a given outermost expression.

A class declaration

class κ⇒ C α where { x1 :: κ1 ⇒ τ1; . . . ;xn :: κn ⇒ τn }
introduces in Γ a class-constraint ∀α. κ⇒ C α, where C is a class name, α is a sequence
of class parameters and κ is called a class context. There are no restrictions on a class
context, except that the class hierarchy must be acyclic. For each such class declaration,
we let Γcls(C) = ∀α.κ⇒ C α.

The above class declaration also introduces in Γ type assumptions x1 : σ1, . . . ;xn :
σn, where σi = ∀αi .κ∪ κi ⇒ τi and αi = tv(κ∪ κi ⇒ τi), for i = 1, . . . , n. In this case,
we let Γcls(xi) = σi (Γcls(x) is undefined if x is not an overloaded symbol).

Each instance declaration

instance κ⇒ C µ where { x1 = e1; . . . ;xn = en }
introduces in Γ an instance-constraint ∀α. κ ⇒ C µ, where α = tv(κ ⇒ C µ) − tv(Γ),
provided that it is well-formed in Γ. We let Γins(C) denote the set of instance-constraints
introduced in Γ by instance declarations of type class C.

Well-formedness of an instance-constraint κ⇒ C µ in a typing context Γ, written
Γ |=wfi κ⇒ C µ, is defined in Figure 3.

Informaly, an instance-constraint ∀α. κ′ ⇒ C µ is well-formed in Γ if the fol-
lowing conditions hold: 1) tv(κ′) ⊆ tv(C µ); 2) the instance head C µ matches with a
corresponding class-constraint, that is Γ |=cls C µ [SC, κC] is provable for some [SC, κC],
according to the rules defined in Figure 2 (in this case, we call SC the instance matching
substitution for C µ); 3) the instance context κ is well-formed — that is, each constraint

Γ |=cls δ [S, κ]

Γcls(C) = κ⇒ Cα S(Cα) = Cµ

Γ |=cls Cµ [S, κ]

Figure 2: Class matching

Γ |=wfi κ⇒ C µ

tv(κ) ⊆ tv(C µ)
Γ |=cls C µ [SC , κC]
SC κC − κ0 ⊆ κ where κ0 = {δ ∈ SC κC | tv(δ) = ∅}
for each C ′ µ′ ∈ κ0, C

′ µ′ ∈ Γins(C ′)
Γ |=wfi κ⇒ C µ

Figure 3: Well-formed instance constraint

C ′µ′ ∈ SC κC must occur in κ, except if C ′µ′ does not contain any type variables, in
which case there must exist a corresponding instance declaration for class C ′.

In order to clarify this definition, let us consider the following class and instance
declarations:

class A α where . . .

class B α β where . . .

class C α where . . .

class {A α,B α β } ⇒ D α β γ where . . .

instance A Int where . . .

instance {B Int β, C γ } ⇒ D Int β γ where . . .

The instance declaration for class D above is well-formed in a typing context Γ
including class and instance constraints introduced by the above declarations, since we
have that: 1) tv({B Int β, C γ }) ⊆ tv(D Int β γ); 2) Γ |=cls D Int β γ [SD, κD], where
SD = [α := Int] and κD = {A α, B α β}; 3) the context for this instance declaration
includes constraint B Intβ (corresponding to Bαβ ∈ κD), but does not include constraint
A Int (corresponding to A α ∈ κD), which does not contain type variables, and has
a corresponding instance declaration. Note that the context of an instance declaration
may also include constraints that do not occur in its class declaration, as is the case for
constraint C γ in the above instance declaration for class D.

Further restrictions must be imposed in order to ensure that context reduction ter-
minates (we refer the reader to [G. Duck and others 2004, M. Sulzmann and others 2007]
and to section 7.6 of GHC user’s manual[S. P. Jones and others 1998] for discussions on
this topic).

Instance-constraints in Γins(C) must not unify with each other, i.e. two distinct
instance-constraints κ⇒ (C τ1 . . . τn) and κ′⇒ (C τ ′1 . . . τ

′
n) must not be such that Sτ1 =

Sτ ′1, . . . , Sτn = Sτ ′n, for some substitution S (again, assuming that tv({τ1, . . . , τn}) ∩
tv({τ ′1, . . . , τ ′n}) = ∅). This requirement — of non-overlapping instances — could be
relaxed, as in Haskell, but this is outside of the scope of this paper.

The above instance declaration also introduces in Γ instance type assumptions
xi : σi, for i = 1, . . . , n, where σi = ∀α′i. SC(κi ∪ κ ⇒ τi), Γcls(xi) = ∀α.κi ⇒ τi,
α′ = tv(SC(κi ∪ κ ⇒ τi)) − tv(Γ) and SC is the instance matching substitution of
constraint C µ in Γ.

3.3. Constraint set closure

Section 3.5 defines well-formedness of a constrained type ∀α. κ ⇒ τ based
on a (so-called) constrant-set closure operation, κ|∗V , defined as follows (con-
straint set closure was previously defined in [C. Camarão and L. Figueiredo 1999,
C. Camarão and others 2008]):

κ|V = {C µ ∈ κ | tv(µ) ∩ V 6= ∅}

κ|∗V =

{
κ|V if tv(κ|V) ⊆ V
κ|∗tv(κ|V) otherwise

We have e.g. tv
(
{Collection c e}|∗{e}

)
= {c, e} and tv

(
{F a b,G a c}|∗{c}

)
= {a, b, c}.

3.4. Constraint Set Satisfiability

We write Γ |=sat κ [S] to mean that the constraint set κ is satisfiable in typing context Γ
by substitution S, according to the rules presented in Figure 4. If Γ |=sat κ [S] is provable,
for some substitution S, we call S a solution to the satisfiability problem (Γ, κ).

Γ |=sat κ [S]

Γ |=sat ∅ [id]

κ⇒ C µ′ ∈ Γins(C)
S(C µ) = S(C µ′)
Γ |=sat S κ [S′]
S0 = (S′ ◦ S) |tv(C µ)

Γ |=sat {C µ} [S0]
Γ |=sat κ1 [S1] Γ |=sat S1κ2 [S2]

Γ |=sat κ1 ∪ κ2 [S2 ◦ S1]

Figure 4: Constraint set satisfiability

3.5. Well-formedness, simplification and equality of types

Definition 1 (Well-formed types). A constrained type κ ⇒ τ is well formed in a typing
context Γ, written Γ |= κ ⇒ τ , if Γ |=wf κ ⇒ τ [S] is provable for some S, according to
the rule presented in Figure 5.

Γ |=wf κ⇒ τ [S]

there exists a unique substitution S such that Γ |=sat κ0 [S] and tv(Sκ0) = ∅
where κ0 = (κ− κ|∗V) ∪ {δ ∈ κ | tv(δ) = ∅}

V = tv(τ)− tv(Γ)
Γ |=wf κ⇒ τ [S]

Figure 5: Well formed constrained type

Informally, a constrained type κ ⇒ τ is well formed in a typing context Γ if the
set of all constraints in κ that have no type variables or have only “unreacheable type
variables” is uniquely satisfiable in Γ.

Note that, if Γ |=wf κ ⇒ τ [S] is provable for some S, where typing context
Γ have only well-formed class and instance constraints (according to the rules given
in Section 3.2), then Sτ = τ and Sκ does not contain “unreachable type variables”,
i.e. Sκ = (Sκ)|∗V where V = tv(τ)− tv(Γ). In this case, type κ⇒ τ can be specialized
to Sκ⇒ τ , that can be simplified to κ′ ⇒ τ , where κ′ = Sκ−{δ ∈ Sκ|tv(δ) = ∅}— this
simplification is denoted by Γ |= κ ⇒ τ � κ′ ⇒ τ . We also write Γ |= σ � σ′, where
σ = ∀α.κ⇒ τ and σ′ = ∀α′.κ′ ⇒ τ , if Γ |= κ⇒ τ � κ′ ⇒ τ and α′ = tv(κ′ ⇒ τ)∩α.3

Type simplification Γ |= σ � σ′ yields equal types in Γ, that is, equality be-
tween constrained types, written Γ |= σ ≡ σ′, is defined as the reflexive, symmetric and
transitive closure of the type simplification relation Γ |= σ � σ′.

3.6. Solution to the MPTC ambiguity problem
According to our definition of well-formed constrained type above, the type inferred for
m :: Matrix in Example 2, namely

(Mult Matrix Matrix c, Mult c Matrix Matrix) ⇒ Matrix

is well-formed, and can be simplified to Matrix. This occurs because there is a unique
solution S — namely S = [c := Matrix] — to the satisfiability problem of κ in Γ, where:

κ = { Mult Matrix Matrix c, Mult c Matrix Matrix }
Γcls(Mult) = {(*)::(Mult a b c) ⇒ a → b → c }
Γins((*)) = { Matrix → Matrix → Matrix, Matrix → Vector → Matrix}

Note that the overall effect of using our definition of well-formed constrained type
is to make well-typed some expressions that were previously considered ambiguous.

4. Type System
We use the context-free syntax of core-ML expressions given in Figure 6, called here
core-Haskell to emphasize that we want to analyze typability and type inference for these
expressions when they occur in an outermost typing context with information about over-
loaded symbols (cf. Section 3.2).

Expressions e ::= x | λx. e | e e′ | let x = e in e′

Figure 6: Context-free syntax of core-Haskell expressions

In type systems with support for parametric polymorphism, the type ordering is
such that ∀α. σ ≤ [α := τ]σ, for all simple types τ . In the presence of constrained
types, we must take the instantiation relation in the context of a typing context, because
overloading is resolved according to constraints which are available in a typing context
(cf. section 3.2). We define thus an ordering (i.e. a constraint-based instantiation) relation
on types, with respect to a given typing context — written Γ |= σ ≤ σ′ — similar to that
in [K. Faxén 2003, C. Camarão and L. Figueiredo 1999], as follows.

3Constrained type specialization/simplificatiuon is also called improvement [M. Jones 1995b].

Γ ` e : κ⇒ τ

x : σ ∈ Γ Γ |= σ ≤ κ⇒ τ

Γ ` x : κ⇒ τ
(VAR)

Γ, x : τ ′ ` e : κ⇒ τ

Γ ` λx. e : κ⇒ τ ′ → τ
(ABS)

Γ ` e : κ⇒ τ ′ → τ Γ ` e′ : κ′ ⇒ τ ′

Γ ` e e′ : κ ∪ κ′ ⇒ τ
(APP)

Γ ` e : κ⇒τ Γ |= κ⇒ τ Γ, x :σ ` e′ : κ′⇒τ ′

Γ ` let x = e in e′ : κ′ ⇒ τ ′
(LET)

where: σ = ∀α.κ⇒ τ
α = tv(κ⇒ τ)− tv(Γ)

Figure 7: Type System

Definition 2 (Type Ordering). Let Γ be a typing context and ∀α. σ be a well formed
type in Γ, that is Γ |= ∀α. σ. Then Γ |= ∀α.σ ≤ [α := τ]σ, for any type τ such that
Γ |= [α := τ]σ.

If Γ |= σ ≤ σ′, then σ′ is called an instance of σ in typing context Γ, and σ is said
to be more general than σ′ in typing context Γ.

A syntax directed type system for core-Haskell is presented in Figure 7. Type
rules are as usual Hindley-Milner rules, except that constrained instatiation is used in rule
(VAR), and well-formedness of a constrained type is required before its introduction in the
typing context, in rule (LET). Also, in rule (APP), the type of an application e e′ includes
both constraints that occur in the type of function e and in the type of argument e′.

The type system enjoys the important property that derivability of well-formed
constrained types is closed under substitution (we assume always that all class-constraints
and instance constraints in Γ are well-formed). (cf. [K. Faxén 2003]):

Lemma 1 (Substitution). Let Γ ` e : κ ⇒ τ . Then Γ |= κ ⇒ τ and, for all S such that
Γ |= S(κ⇒ τ), we have that SΓ ` e : S(κ⇒ τ).

Proof. By induction on the structure of e.

5. Type inference
The type inference algorithm is presented in Figure 5 as a syntax-directed proof system
of judgements Γ `I e : (κ⇒ τ,Γ′).

Let Θ(Γ) denote the information contained in the outermost typing context,
i.e. class and instance constraints introduced by class and instance declarations, and the
principal type declared for each overloaded symbol, as specified in subsection 3.2, i.e. :

Θ(Γ) =
⋃
C

Γcls(C) ∪
⋃
C

Γins(C) ∪
⋃
x

Γ(x)

Γ `I e : κ⇒ τ

Γ(x) = ∀α. κ⇒ τ

Γ `I x :
(
κ⇒ τ, {x : Γ∗(x)}

) (VARI)

Γ `I (e : κ⇒ τ,Γ′)

Γ	 x `I λx. e : (κ⇒ τ ′ → τ, Γ′ 	 x)
(ABSI)

where: τ ′ =
{
τ if x : τ ∈ Γ′

α otherwise, α fresh

Γ `I e : (κ⇒ τ,Γ1) Γ `I e
′ : (κ′ ⇒ τ ′,Γ2)

Γ `I e e
′ : S ′S(κ ∪ κ′)⇒ Sα, SΓ1 ∪ SΓ2)

(APPI)

where: S = unify({τ = τ ′ → α} ∪ st(Γ1,Γ2))
S ′ = wf (S(κ ∪ κ′ ⇒ α),Γ), α fresh

Γ `I e : (κ⇒ τ,Γ1) Γ, {x : σ} `I e
′ : (κ′ ⇒ τ ′,Γ2)

Γ `I let x = e in e′ : (S ′Sκ′ ⇒ Sτ ′, SΓ′ 	 x)
(LETI)

where: S0 = wf (κ⇒ τ,Γ1)
σ = ∀α. S0κ⇒ τ
α = tv(S0κ⇒ τ)− tv(Γ1)
S = unify(st(Γ1,Γ2))
S ′ = wf (S(κ ∪ κ′ ⇒ τ ′),Γ)

Figure 8: Algorithm for Inference of Principal Typings

where C ranges over all class names and x over all overloaded symbols. The algorithm
uses the notation Γ(x) and Γ∗(x), defined as follows:

Γ(x) =

κ⇒ τ if x is an overloaded symbol and Γcls(x) = ∀α. κ⇒ τ

or x is a lambda or let-bound variable and x : ∀α. κ⇒ τ ∈ Γ
where type variables in κ⇒ τ are fresh

α otherwise, where α is fresh

Γ∗(x) = Γ(x) ∪Θ(Γ)
Γ	 x = Γ− {x : σ | x is a lambda or let-bound variable, σ ∈ Γ(x)}

Also used are functions lb, st, unify and wf , were unify type is the usual type
unification function; lb(Γ) denotes the subset of type assumptions for lambda-bound vari-
ables in Γ and st(Γ,Γ′) yields the set of equality equations between (simple) types of each
lambda-bound variable which occurs in both Γ and Γ′ (which must be unified during type
inference, because they are restricted to have monomorphic types):

st(Γ,Γ′) = {τ = τ ′ | x : τ ∈ lb(Γ), x : τ ′ ∈ lb(Γ′)}

wf(κ⇒ τ,Γ) =
let κ0 = κ− κ|∗tv(τ) ∪ {δ ∈ κ | tv(δ) = ∅ }

in if κ0 = ∅ then id
else case sat(κ0,Γ) of

(Unsat,) → "error: unsatisfiability ..."
(Single,S) → if tv(Sκ0) = ∅ then → S

else "error: ambiguity ..."
→ "error: ambiguity ..."

Figure 9: Well-formedeness (unambiguity) of constrained types

Function wf tests well-formedness of a constrained type κ⇒ τ in a typing context
Γ, based on the definition of relation Γ |=wf κ⇒ τ defined in Figure 5. The definition of
wf is presented in Figure 9.

It uses function sat(κ,Γ), defined in [C. Camarão and others 2004,
C. Camarão and others 2008], which essentially implements Γ |=sat κ [S] defined
in Figure 4, computing the solution for a satisfiability problem (κ,Γ) whenever one
exists. More precisely, sat returns whether there exist zero (Unsat), one (Single) or
more solutions to the satisfiability problem (κ,Γ) given as its argument and, in the
case of Single, it returns also the solution S. In this last case, if overloading has been
resolved, this substitution is used to specialize (“improve”) type κ ⇒ τ , so that the
constraints in κ that triggered overloading resolution can be removed. If there is no
solution to the satisfiability problem (κ,Γ), wf gives an error indicating that there exists
no instance-constraint in Γ that corresponds to what is required by the type of the relevant
expression; if there are two or more solutions to the satisfiability problem, then wf returns
an error that indicates ambiguity.

The restrictions that must be imposed on class and instance declarations in or-
der to have decidability of constraint set satisfiability — Γ |=sat κ [S] — are the same
as imposed in Haskell (see e.g. [G. Duck and others 2004, M. Sulzmann and others 2007,
P. Stuckey and M. Sulzmann 2005, S. P. Jones and others 1998]).

5.1. Principal Type and Typing

Definition 3 (Principal Type). The principal type of an expression e in a typing context Γ
is the least upperbound, in the partial order given by Γ |= σ ≤ σ′ of Definition 2, of all
types that can be derived for e in Γ.

Orderings on typing contexts and typings are straightforward extensions of the
ordering on types and the notion of principal typing is a straightforward extension of that
of principal type, that takes into account these new orderings. We have:

Definition 4 (Ordering on Typing Contexts). Let Γ = Θ(Γ1) = Θ(Γ2). We define Γ |=
Γ1 ≤ Γ2 if, for all lambda or let-bound variables x, we have that Γ |= Γ1(x) ≤ Γ2(x).

Definition 5 (Ordering on Typings). Let (σ1,Γ1) and (σ2,Γ2) be typings — i.e. pairs
where the first component is a type and the second component is a typing context — for
which Θ(Γ1) = Θ(Γ2). Let us call Γ the typing context Θ(Γi) (i = 1 or i = 2). Then
Γ |= (σ1,Γ1) ≤ (σ2,Γ2) if Γ |= Γ1 ≤ Γ2 and Γ |= σ1 ≤ σ2.

Definition 6 (Principal Typing). The principal typing of an expression e in an outermost
(overloading) typing context Γ0 is the least upperbound, in the partial order given by
Γ0 |= (σ1,Γ1) ≤ (σ2,Γ2) of Definition 5, of all typings (σ,Γ) such that Γ0 = Θ(Γ),
Γ ` e : κ⇒ τ is provable and σ = ∀α. κ⇒ τ , where α = tv(κ⇒ τ)− tv(Γ).

Theorem 1 (Principal Typing). For any expression e and well formed outermost typing
context Γ0, we have that Γ `I e : κ ⇒ τ is provable if and only if (σ,Γ) is the principal
typing of e in Θ(Γ), where σ = ∀α. κ⇒ τ , where α = tv(κ⇒ τ)− tv(Γ).

A principal type theorem follows directly from Theorem 1 (of principal typing).

6. Conclusion
We have presented a simple, minimalist solution to Haskell’s MPTC dilemma, which re-
quires only a small change to the type inference algorithm and to what has been considered
ambiguity in Haskell. It does not require the use of FDs between type class parameters
nor any other extra mechanism, such as associated types.

More precisely, our proposal is based on using a simple reachability condition,
already employed nowadays by Haskell compilers with support for MPTCs; but failure
of this reachability condition is used to close the world, as opposed to being used directly
as a syntactic criterion for type ambiguity. In comparison to the use of FDs between
type class parameters or an extra mechanism to be employed in order to close the world
by performing type specialization during type inference, our proposal does not require
programmer’s intervention and can be used when no FDs exist.

References
C. Camarão and L. Figueiredo (1999). Type Inference for Overloading without Restric-

tions, Declarations or Annotations. In Proc. 4th Fuji International Symp. on Functional
and Logic Programming (FLOPS’99), pages 37–52. Springer-Verlag, LNCS 1722.

C. Camarão and others (2004). Constraint-set Satisfiability for Overloading. In Proc. of
the 6th ACM SIGPLAN International Conf. on Principles and Practice of Declarative
Programming (PPDP’04), pages 67–77.

C. Camarão and others (2008). Open and Closed Worlds for Overloading: a Definition
and Support for Coexistence. Journal of Universal Computer Science, 13(6):854–873.

D. Duggan and J. Ophel (2002). Type Checking Multi-Parameter Type Classes. Journal
of Functional Programming, 12(2):135–158.

G. Duck and others (2004). Sound and decidable type inference for functional depen-
dencies. In Proc. of the European Symposium on Programming (ESOP’04). Springer-
Verlag LNCS 2986.

J. Mitchell (1996). Foundations of Programming Languages. MIT Press.

K. Chen and others (1992). Parametric Type Classes. In Proc. ACM Conf. on Lisp and
Functional Programming, pages 170–181.

K. Faxén (2003). Haskell and Principal Types. In Proc. of the 2003 ACM SIGPLAN
Haskell Workshop, pages 88–97.

M. Chakravarty and others (2005a). Associated type synonyms. In Proc. of the 10th
ACM SIGPLAN International Conf. on Functional Programming (ICFP’05), pages
241–253.

M. Chakravarty and others (2005b). Associated types with class. In Proc. of the ACM
Symposium on Principles of Programming Languages (POPL’05), pages 1–13.

M. Jones (1992). A Theory of Qualified Types. In Proc. of the European Symposium on
Programming (ESOP’92), volume 582, pages 287–306. Springer-Verlag.

M. Jones (1993). A system of constructor classes: overloading and higher-order polymor-
phism. In Proc. of the ACM Conference on Functional Programming and Computer
Architecture (FPCA’93), pages 52–64.

M. Jones (1994). Qualified Types: Theory and Practice. PhD thesis, Distinguished Dis-
sertations in Computer Science. Cambridge University Press.

M. Jones (1995a). A system of constructor classes: overloading and higher-order poly-
morphism. Journal of Functional Programming, 5(1):1–36.

M. Jones (1995b). Simplifying and Improving Qualified Types. In Proc. of the ACM Con-
ference on Functional Programming and Computer Architecture (FPCA’95), pages
160–169.

M. Jones (2000). Type Classes with Functional Dependencies. In Proc. of the European
Sympoisum on Programming (ESOP’2000). Springer-Verlag LNCS 1782.

M. Jones and others (1998). Hugs98. http://www.haskell.org/hugs/.

M. Sulzmann and others (2007). Understanding Functional Dependencies via Constraint
Handling Rules. Journal of Functional Programming, 17(1):83–129.

P. Stuckey and M. Sulzmann (2005). A Theory of Overloading. ACM Transactions on
Programming Languages and Systems (TOPLAS), 27(6):1216–1269.

P. Wadler and S. Blott (1989). How to make ad-hoc polymorphism less ad hoc. In Proc. of
the 16 th ACM Symposium on Principles of Programming Languages (POPL’89), pages
60–76. ACM Press.

S. Blott (1991). Type Classes. PhD thesis, Department of Computer Science, Glasgow
University.

S. P. Jones and others (1998). GHC — The Glasgow Haskell Compiler 6.10 User’s Man-
ual. http://www.haskell.org/ghc/.

