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Incomplete source code naturally emerges in software development: during the design phase, while evolving,

testing and analyzing programs. Therefore, the ability to understand partial programs is a valuable asset.

However, this problem is still unsolved in the C programming language. Difficulties stem from the fact that

parsing C requires, not only syntax, but also semantic information. Furthermore, inferring types so that they

respect C’s type system is a challenging task. In this paper we present a technique that lets us solve these

problems. We provide a unification-based type inference capable of dealing with C intricacies. The ideas we

present let us reconstruct partial C programs into complete well-typed ones. Such program reconstruction has

several applications: enabling static analysis tools in scenarios where software components may be absent;

improving static analysis tools that do not rely on build-specifications; allowing stub-generation and testing

tools to work on snippets; and assisting programmers on the extraction of reusable data-structures out of the

program parts that use them. Our evaluation is performed on source code from a variety of C libraries such as

GNU’s Coreutils, GNULib, GNOME’s GLib, and GDSL; on implementations from Sedgewick’s books; and on

snippets from popular open-source projects like CPython, FreeBSD, and Git.
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1 INTRODUCTION
Incomplete source-code appears in a variety of scenarios: during inception of a program, within

an editor or IDE; in cross-platform development, when source portions are unavailable due to

incompatibility; in the form of patches submitted to code reviewing; as snippets contained in reports

from bug-trackers. Therefore, due to the ubiquitousness of partial programs, the ability to work

with incomplete sources is a desirable asset.
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Testimony of this importance is the fact that the programming languages community has gone to

great lengths to design tools that can deal with partial programs [Chugh et al. 2009; Dagenais and

Hendren 2008; Godefroid 2014; Knapen et al. 1999; Koppler 1997; Perelman et al. 2012]. However,

in the realm of the C programming language, this is still an unsolved problem. This difficulty stems

mainly from two reasons: (i) the tight coupling between syntactic and semantic analysis when

parsing C code; (ii) the lack of a type inference engine for C, granted the challenges involved in

building one. This paper describes solutions to these problems.

In this work, we present what, to the best of our knowledge, is the first technique thats allows

the compilation of incomplete C sources. Our goal is to reconstruct a partial program P as a new

program P ′
that preserves every syntactic construction of P, and contains any type declaration

missing from P, so that the new program P ′
is well-typed. As demonstrated in Section 5, such

successful reconstruction enables static analysis tools to work, where otherwise not viable; improves

precision of “zero setup” based static analysis tools; supports testing and stub-generation; and

serves as a general code completer for C programmers.

The Contributions of This Work. During the course of dealing with incomplete C sources, we

architect solutions to the following problems:

• Parsing C requires semantic information to handle ambiguous syntax, but this information

might be missing. In Section 3.1 we formalize a technique that deals with this problem:

decisions are postponed until further syntax can be extracted from the syntax available in

the partial program.

• C accepts liberal conversions, for instance, between a pointer type and an integer type (i.e.

the null pointer constant, 0). But those two types are not syntactically interchangeable, thus

they are not unifiable. In Section 3.2 we explain how to find the specific type of a variable, by

defining a lattice of pre-types to solve this problem.

• In C, implicit conversions of qualified types (e.g const and volatile) are asymmetric. This

prevents standard type inference techniques, which rely on type equivalences, to work with

C. In Section 3.3 we discuss a strategy to model pointer relations through subtyping and how

we use unification to simultaneously solve constraints in the form of type equivalence and

type inequality.

• An incomplete source code might not contain enough usages of its variables and its functions

so that their type can be inferred. In Section 3.4 we describe how our type inference engine

works under such constraint. Unsolved types can be safely instantiated, without interfering

with solved type variables.

To demonstrate the ideas advocated in this paper, we have materialized them into a tool called

PsycheC which produces a C header containing declarations that are absent from the partial

program it receives as input. The #inclusion of this header in the incomplete source characterizes

a reconstructed program that compiles successfully. Notice that, in the context of C, referring

to “compilation" as the entire pipeline of (a) preprocessing, (b) compiling, (c) assembling, and (d)

linking is a common abuse of terminology. Our work is specifically targeted at compilation, as

in item (b). We do not generate definitions for missing functions, so the program reconstructed

by PsycheC may not link - stub-generation tools exist [Cadar et al. 2008; Godefroid et al. 2005;

Tillmann and De Halleux 2008; Williams et al. 2005], but are beyond the scope of this paper. A

description of our implementation appears in Section 4.

2 CHALLENGES
To produce a well-typed program out of an incomplete C source we have to circumvent a number

of challenges. In this section, we provide examples of such challenges, and in Section 3 we show
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how we solve them. Inferring types that satisfy C’s type system involves other challenges not

mentioned in this section. Those are discussed throughout the text. We start with Challenge 1,

which concerns the parsing of a partial C program.

Challenge 1. Determine the syntactic nature of user-defined names in a programming language

that relies on semantic information to guide parsing, when declarations are missing.

  
  
(a)   void  f()  {  

    T  *  a;  
}  

        (b)   typedef  int  T;  
void  f()  {  
    T  *  a;  
}  

          (c)   int  a,  T;  
void  f()  {  
    T  *  a;  
}  

            (d)   typedef  int  T;  
void  f()  {  
    T  *  a;  
    T  b;  
}  

      (e)   int  T;  
void  f()  {  
    T  *  a;  
    b  +  T;  
}  

          (f)   int  T;  
void  f()  {  
    T  *  a;  
    x  =  T  *  b;  
}  

  
  
  

Fig. 1. (a) Is T the name of a variable or of a type? (b) Complete program where T is a type. (c) Complete
program where T is a variable. (d) Syntax that lets us conclude T is a type. (e-f) Syntax that lets us conclude T
is a variable.

Figure 1 illustrates this challenge. The program in part (a) does not contain enough information

to determine the syntactic nature of T. Depending on missing elements, T can denote a type, as in

Figure 1 (b), or a variable, as in Figure 1 (c). As we show in Section 3.1, to determine the meaning

of T, we postpone parsing decisions until we have seen more of the program. For instance, extra

syntax lets us infer that T is a type in Figure 1 (d); or a variable in Figures 1 (e and f).

Challenge 2. Distinguish between non-unifiable types that are mutually exchangeable.

  
  
  
  

(a)   void  f()  {  
    T  a  ;  
    a  =  0;  
}  

(b)   void  f()  {  
    T  b;  
    b  =  0;  
    b  *  10;  
}  

(c)   void  f()  {  
    T  c;  
    c  =  0;  
    *c  =  10;  
}  

  
  
  

Fig. 2. (a) Is T numeric or a pointer? (b) Program where T is numeric. (c) Program where T is pointer.

The program in Figure 2 (a) is not syntactically ambiguous: T must be a type. However, this

program is semantically ambiguous: T can be int, int*, int**, float, float*, etc. As we explain in

Section 3.2, we define a lattice of pre-types that helps us find the most general type of T in those

examples. This lattice lets us promote T to numeric in Figure 2 (b) and to pointer in Figure 2 (c). To

bind names to points in this lattice, we rely on further program syntax. For instance, in Figure 2 (b)

we know that bmust be an arithmetic type
1
, because pointers cannot be used in multiplication [ISO-

Standard 2011]{§6.5.5}. On the other hand, Figure 2 (c) declares a pointer: the syntax of C does not

permit dereferencing arithmetic types, as we observe in line 4.

Challenge 3. Account for unidirectional type equivalences represented by assignments.

This challenge exists due to the way type qualifiers [ISO-Standard 2011]{§6.7.3} work in C. We

use const throughout the text, but the described behaviour applies to volatile as well. In Figure 3

(a), T1 can be either int or const int. The latter is possible because creating a constant variable out
of a non-constant one is allowed. But, in Figure 3 (b) T2 must be int: T2 as a const int would lead to

an invalid program, since reassigning a constant, as in b = 10, is not permitted. A harder challenge

appears in Figure 3 (c), where the assignment involves pointers. Despite w being const int*, it may

be assigned to a more strict pointer. In fact, the expression *c = 10 indicates that c cannot be a

1
The C standard refers to integer and floating-point types collectively as arithmetic types [ISO-Standard 2011]{§6.2.5.21}.
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(a)   void  f()  {  
    int  x;  
    T1  a  =  x;  
}  

(b)   void  f()  {  
    const  int  y;  
    T2  b  =  y;  
    b  =  10;  
}  

(c)   void  f()  {  
    T3  c;  
    const  int*  w  =  c;  
    *c  =  10;  
}  

(d)   void  f()  {  
    const  int*  z;  
    T4  d  =  z;  
}  

  
  
  
  
  
  

Fig. 3. (a) Is T1 int or const int? (b) Despite y being const int, T2 cannot be const int. (c) Despite w being
const int*, T3 cannot be const int*. (d) Program where T4 must be const int*.

constant pointer and, therefore, the only correct solution is T3 as an int*. However, in Figure 3

(c), since the assignment is from a constant pointer, T4 cannot be int*. It must really be const int*.
Due to the aforementioned asymmetries, traditional unification, which relies on type equivalences,

cannot be used in C. In Section 3.3, we discuss how we employ subtyping to solve this problem and

a novel approach to incorporated it in unification.

Challenge 4. Generate types for variables whose nature is not sufficiently restricted by syntax.

  
  
  
  
  
  
  

(a)   void  f()  {  
    T1  d  =  malloc(8);  
    *d  =  9.9;  
}  

(b)   void  f()  {  
    T2  c  =  malloc(1);  
    *c  =  'a';  
}  

(c)   void  f()  {  
    T3  v  =  malloc(4);  
    *v;  
}  

  
  Fig. 4. What are the types T1, T2 and T3, considering that malloc’s return type is void*?

Figure 4 illustrates this challenge. The return type of malloc is void*. In programming language

parlance, void* is a top type among pointers, meaning that we can unify it with any other pointer

type. However, there is no actual value whose type is only void*. And yet, we need to instantiate

it to produce a well-typed program for the incomplete source in Figure 4 (c). Further syntax in

Figures 4 (a-b) lets us conclude that T1 and T2 are arithmetic types; on the other hand, in Figure 4

(c) we do not have this information. In Section 3.4 we define the notion of “orphan” variables, which

we always can safely instantiate. In Figure 4 (c), v is a pointer to an orphan.

3 FROM INCOMPLETE SOURCES TOWELL-TYPED PROGRAMS
To produce a well-typed program out of an incomplete C source-code Ppar , we proceed in four

steps. First, we parse Ppar (Section 3.1) to obtain an abstract syntax tree (AST). Second, we traverse

this AST to generate constraints (Section 3.2). Third, we use an unification-based algorithm to

solve these constraints (Section 3.4). Finally, solved constraints let us infer missing types for Ppar
(Section 3.4.1). We describe these steps in the rest of this section. During this discussion, we assume

that Ppar is derived from a syntactically valid program Por i . During our presentation, three core

languages are developed: µA, µB, and µC . They contain only enough syntax to illustrate the essence

of our ideas. PsycheC accepts actual C. Section 4 describes information about the C standard version

that our tool can deal with.

3.1 Challenge 1 – Parsing Ambiguous Syntax
The C programming language uses a symbol table to guide parsing. The contents of this symbol

table determine which production will be matched, depending on whether a name designates either

a variable or a type. For instance, the term x*y; can denote either the product of variables x and y,
or the declaration of variable y as a pointer to type x. Ambiguities do not happen in a complete

C program because declarations must precede uses of identifiers [ISO-Standard 2011]. However,

incomplete programs may not contain all type declarations, thus making it impractical for the parser
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to rely on such semantic information. A known approach to gather information from incomplete

programs is fuzzy parsing [Koppler 1997], but a fuzzy parser does not recognise the entire language,
only certain constructs of interest. Knapen et al [Knapen et al. 1999] presents a technique to deal

with C++ ambiguities that resembles fuzzy parsing. They point out eight ambiguous syntactic

constructions, out of those, three exist in C as well. Figure 5 shows them. In the rest of this section,

we explain how we solve ambiguities through a technique similar to Knapen’s, but under formalised

guarantees on the produced AST.

Function call or variable declaration a(b);

Coercion of unary expression or binary expression (a)*b; (a)-b;

Pointer declaration or multiplication a*b;

Fig. 5. Ambiguities due to missing declarations.

Properties of Partial-Program ASTs. The key idea to deal with missing declarations is to

postpone ambiguity resolution until we have enough information to solve it. To explain this idea,

we shall use the grammar in Figure 6. This is the minimum setup that lets us build the ambiguous

term “T * a”. The other cases in Figure 5 are similar. We borrow the notation of Prolog’s logical
grammars [Sterling 1994, Ch.19], e.g., the grammar in Figure 6 is an executable Prolog program.

We shall call the language defined by that grammar µA. A program is a list of terms separated by

semicolon (;). Terms can be type declarations (Td), variable declarations (Vd) or expressions (E). The
non-terminal that denotes programs has four attributes, e.g.: P(T0,V0,T1,V1). Following common

parsing jargon, the first two are inherited, and the others are synthesized. Thus, the production P
receives two attributes, T0 and V0, and, if it successfully consumes a string, then it produces the

attributes T1 and V1. We let T denote sets of names used as types, and V denote sets of names used

as variables. Terms, which we denote by S , use the same four attributes. A type declaration Td(x)
succeeds if x is found to be the name of a new type. Only the type int is concrete in µA; hence, new
types are alias of int. A variable declaration Vd(T ,x) succeeds if x can be proven to be the name of

a variable whose type is present in the set of types T . Parsing an expression such as E(V ) succeeds

if all the variables that this expression uses are present in the set of names V .

Definition 3.1 (Valid program). We say that P is a valid program if P is a list of terms, e.g.,

(Td; | Vd; | E; )∗ that can be consumed by the production rule P(∅, ∅,T ,V ) in Figure 6. In this case,

we say that T is the set of type names, and V is the set of variable names of P.

P(T ,V ,T ”,V ”) ::=1 S(T ,V ,T ′,V ′); P(T ′,V ′,T ”,V ”);

P(T ,V ,T ′,V ′) ::=2 S(T ,V ,T ′,V ′);

S(T ,V ,T ∪ {x},V ) ::=3 Td(x) if x < V
S(T ,V ,T ,V ∪ {x}) ::=4 Vd(T ,x) if x < T

S(T ,V ,T ,V ) ::=5 E(V )

Td(x) ::=6 typedef intx
Vd(T ,y) ::=7 x y if x ∈ T
Vd(T ,y) ::=8 x ∗ y if x ∈ T

E(V ) ::=9 x + y if x ∈ V ∧ y ∈ V
E(V ) ::=10 x ∗ y if x ∈ V ∧ y ∈ V

Fig. 6. µA – definition of a minimalistic C program. The subscript s in the production symbol, e.g., ::=s helps
us writing the proofs (available as supplementary material).
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Pβ (T ,V ,T ”,V ”) ::=a Sβ (T ,V ,T
′,V ′); Pβ (T

′,V ′,T ”,V ”);

Pβ (T ,V ,T
′,V ′) ::=b Sβ (T ,V ,T

′,V ′);

Sβ (T ,V ,T ,V ∪ {x}) ::=c TV β (x)
Sβ (T ,V ,T ,V ∪ {x ,y}) ::=d Eβ (x ,y)
Sβ (T ,V ,T ∪ {x},V ) ::=e Tdβ (x)
Sβ (T ,V ,T ∪ {x},V ∪ {y}) ::=f Vdβ (x ,y)
TV β (y) ::=д x ∗ y

Tdβ (x) ::=h typedef intx
Vdβ (x ,y) ::=i x y

Eβ (x ,y) ::=j x + y

Fig. 7. Grammar that we use to disambiguate programs. We refer to this new language as µB. Its grammar
is similar to that of µA, but with a new non-terminal TV, which, despite deriving syntax [x ∗ y], lets us
postpone the decision of whether x is a variable or a type.

Lemma 3.2. The following properties are true about a valid program P produced by P(∅, ∅,T ,V ).
We let a ++ b denote the concatenation of the lists a and b:
(1) T ∩V = ∅

(2) If P = P1 ++ a b;++ P2, then: (i) there exists x , such that (typedef x a; ) ∈ P1, and (ii) x ∈ T
(3) If P = P1 ++ a + b;++ P2, then: (i) there exists x , such that (x a; ) ∈ P1, (ii) there exists y, such

that (y b; ) ∈ P1, (iii) {x ,y} ⊆ T and (iv) {a,b} ⊆ V

Example 3.3. Program P1 = [typedef int a; a a; ] is not valid, because name a is used both as

variable and as type. Program P2 = [a b; ] is not valid, because the name a is used as a type, but

has not been defined before. Program P3 = [int a; a + b; ] is not valid because the name b is used as

a variable, but has not been defined before.

Definition 3.4 (Partial Program). Let Por i be a list of terms that denotes a valid program. We

obtain a partial program Ppar by eliminating any number of terms from Por i .

Example 3.5. The program P = [typedef int a; a b; a ∗ c; ] is valid according to definition 3.1.

There exist eight possible partial programs that we can produce out of P. A few of them are shown

below: P1 = [a b; a ∗ c; ]. P2 = [typedef int a; a ∗ c; ]. P3 = [a b; a ∗ c; ].

As we notice from Example 3.5, some partial programs are not valid. Some invalid µA programs

correspond to ambiguous C codes. For instance, the program [a ∗ b; ] is ambiguous, because we

do not know if it corresponds to a multiplication between a and b, or the declaration of b as a

pointer of type a. However, there are partial programs that provide us with enough information to

disambiguate them. As an example, the program [a ∗ b; a c; ] can only be parsed as two declarations.

In this case, the second term, e.g., [a c; ], lets us infer that the name a is a type, not a variable.

Similarly, the program [a ∗ b; a + c; ] can only denote two expression statements, for the second

term lets us infer that a is the name of a variable. Based on this observation, we use the logical

grammar in Figure 7 to disambiguate partial programs.

The grammar in Figure 7 uses a new non-terminal TV to disambiguate names. To this effect,

upon finding a term such as [a ∗ b], we postpone the classification of a as either type or variable.
This name, a, will only be marked as a type if the partial program contains either a term such as

[typedef int a], or a term such as [a b]. In the latter case, the name a is being used as the type of a

variable b. Similarly, we mark a as a variable if the partial program contains either a term such

as [x a] (declaration of variable a), or an expression such as [x + a], whose syntax only admits the

name a being a variable.
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Definition 3.6 (Successful Disambiguation). Let Ppar be a partial program. We say that we can

successfully disambiguate Ppar if the production rule Pβ (∅, ∅,T ,V ) succeeds on Ppar , and every

name in Ppar is in T or in V . In this case, we say that Ppar is an unambiguous program.

Notice that the parsing in Figure 7 succeeds in some programs that are still ambiguous, e.g.,

[int x; a ∗ x; ]. In this program we cannot tell the nature of a. Thus, for a successful disambiguation

we require every name in the program to be classified as either a type or a variable. Nevertheless,

we can prove several properties of partial programs, even if they are still ambiguous, as we state in

Theorem 3.7.

Theorem 3.7. Let Ppar be a partial program derived from Por i . If Pβ (∅, ∅,Tβ ,Vβ ) succeeds on
Ppar , and P(∅, ∅,T ,V ) succeeds on Por i , then the following properties hold:
(1) If x ∈ Tβ , then x ∈ T
(2) If x ∈ Vβ , then x ∈ V

Theorem 3.7 gives us a simple corollary, stated below:

Corollary 3.8. Let Ppar be a partial program. If Pβ (∅, ∅,Tβ ,Vβ ) succeeds on Ppar , thenTβ ∩Vβ =
∅.

3.2 Challenge 2 – Dealing with Ambiguous Types
C allows a programmer to define new types (via the enum, struct and union constructs), and

to create aliases to existing types via the typedef construct. Missing type declarations impose

an obstacle to the compilation of incomplete C programs. To reconstruct these declarations, we

perform type inference in two stages: constraint generation and constraint solving, following

common practice for type inference in Haskell and ML [Rémy 2013, Ch.5]. However, in our case,

standard type inference might not be enough, due to ambiguities. The same syntax in C can denote

different types. Figure 2 already shows an example of such ambiguity, because the constant 0 can

be assigned either to a numeric type or a pointer. There are other examples that lead to similar

problems. For instance, the expression {1, 2, 3, 4} can denote different kinds of aggregate types
2
: an

array of integers (int[]) or a struct with four integer fields (struct T {int a, b, c, d}) [ISO-Standard
2011]{§6.7.8}.

To solve type ambiguities, we use global information to determine the type of local constructs.

To this end, we build a lattice of “pre-types". Pre-types are not standard C types; rather, they work

as placeholders for them. Every type variable that we shall create during constraint generation is

bound to a pre-type. During constraint generation we find syntax that lets us move unresolved

type variables up this lattice, until reaching a fixed-point. We use one lattice to solve the ambiguity

between pointer and numeric types seen in Figure 2, and another to solve ambiguities between

aggregate types. These lattices have different structure, but they are built using the same ideas.

Thus, we focus on the former in the rest of this section. To explain our resolution strategy, we

replace µB with µC , a language that contains syntax to deal with arithmetic and pointer types
2
.

Figure 8 defines the syntax of µC . Notice that µC’s syntax is not a superset of µB’s; for instance,
the latter contains a typedef construct, which is absent in the former.

The Semantics of Constraints. Following Nielson et al. [Nielson et al. 2005, Ch.3] or Pottier

and Rémy [Pottier and Rémy 2005], we determine the properties of an acceptable set of constraints

before we show how to generate them. The semantics of constraints, outlined in Figures 9 and 10,

is defined as the judgment ϕ; ψ ; Θ |= K , where each mapping is defined as follows:

2
The C standard refers to array and structures as aggregate types, and to arithmetic and pointers as scalar types [ISO-Standard

2011]{§6.2.5.21}.
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P ::= D P | D ; Program

D ::= τ f (τ x) {S} ; Function

S ::= S S ; Statements

| E; ; Expr-stmt.

| τ x ; ; Decl-stmt.

E ::= ℓ ; Literal

| x ; Variable

| E->x ; Field access

| *E ; Dereference

| &E ; Address-of

| E = E ; Assignment

| E ⊕ E ; Bin. op.

τ ::= t ; Concrete type

| τ * ; Pointer

| const τ ; Qualified type

| {xi : τi }
i=1..n

; Record

| τ → τ ; Function type

| α ; Type variable

Fig. 8. Syntax of µC

conv(t1, t2)
ϕ ⊢ t1 ≡ t2

ϕ ⊢ τ1 ≡ τ2

ϕ ⊢ const τ1 ≡ const τ2

ϕ ⊢ τ1 ≡ τ2

ϕ ⊢ τ ∗
1
≡ τ ∗

2

∀i,ϕ ⊢ τi1 ≡ τi2

ϕ ⊢ {xi : τi1}
i=1..n ≡ {xi : τi2}

i=1..n

ϕ(α) = τ

ϕ ⊢ α ≡ τ

ϕ(α) = τ

ϕ ⊢ τ ≡ α

ϕ ⊢ τ1 ≡ τ2 ϕ ⊢ τ ′
1
≡ τ ′

2

ϕ ⊢ τ1 → τ ′
1
≡ τ2 → τ ′

2

ϕ ⊢ τ1 ≡ τ2

ϕ ⊢ τ1 ≤ τ2

ϕ ⊢ τ1 ≡ τ2

ϕ ⊢ τ ∗
1
≤ const τ ∗

2

Fig. 9. Definition of type equivalence. We let conv(t1, t2) be true if t1 and t2 are mutually convertible concrete
types, e.g., t1 = int and t2 = char, or if they have the same name, e.g., t1 = t2.

• ϕ maps type variables (α ) to types (τ ), e.g., ϕ(α1) = const int or ϕ(α2) = {x : char,y : char}.
• ψ maps program variables to types, e.g.,ψ (x) = int∗ orψ (y) = t.
• Θ maps types to types, e.g., Θ(int) = α1, Θ(int) = t, or Θ(t) = u∗.

A constraint K is satisfiable if there exist ϕ, ψ , and Θ such that ϕ; ψ ; Θ |= K holds. Along this

presentation, we shall use ℓ for literals; τ for types; and t for concrete types, e.g., builtins like int
and char, or type names introduced by the programmer. We use = for assignments and ⊕ for the

other binary operators (e.g.: +, ×, | |, etc); D for declarations; S for statements; and E for expressions.

We let ρ : ℓ → τ be a function that maps literals to types, e.g., ρ(1) = int, and ρ(3.14) = double.
The set of variables that are free in τ is fv(τ ). ⊤ denotes the always satisfiable constraint and ⊥

cannot be satisfiable by any ϕ, ψ , Θ.
Given two types τ and τ ′, constraint τ ≡ τ ′ denotes, through a transitive relation, that these

types are equivalent - note that when implicit conversions appear in a program, the involved

types are considered to be equivalent (e.g., int ≡ char ≡ float). Constraint τ ≤ τ ′ denotes a
subtyping relation, which we use to model pointer semantics, as explained in Section 3.3. Constraint

typeof (x ,τ ) expresses the fact that variable x , not necessarily declared, has type τ . We use constraint

typedef τ as τ ′ to indicate that type τ ′ is an alias of τ . Constraint has(τ ,x : τ ′) indicates that τ has a

field of name x and type τ ′. Symbol declarations and its types are registered using def x : τ in K . We

letψ ∪ {x 7→ τ } denote the operation of updating finite mapψ with entry x 7→ τ . K[α 7→ τ ] means

variable substitution: we are replacing every occurrence of α in K with τ (implicit alpha-conversion

avoids name capture). We let fields(τ ) denote the set of fields in type definition τ . If τ is not a record

type then fields(τ ) = ∅.

Syntax Directed Generation of Constraints. We generate constraints according to the rules

in Figure 11. These rules define a visitor that traverses the AST produced in Section 3.1. For each

node of this tree we generate different constraints. Three syntactic categories exist in the AST:

expressions, statements and declarations. Rule ⟨⟨E : τ ,M ⟩⟩e produces constraints for an expression

E whose expected type is τ . Rule ⟨⟨ S,τ ,M ⟩⟩s produces constraints for a statement S within a

function of return type τ . Rule ⟨⟨D,M ⟩⟩d produces constraints for a declaration D.
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ϕ;ψ ;Θ |= ⊤

∃α .ψ (x) = α ϕ(α) = τ

ϕ;ψ ;Θ |= typeof (x ,τ )
ϕ ∪ {α 7→ τ };ψ ;Θ |= K[α 7→ τ ]

ϕ;ψ ;Θ |= ∃α .K ∀τ .fv(τ ) = ∅

ϕ ⊢ τ1 ≤ τ2

ϕ;ψ ;Θ |= τ1 ≡ τ2

x : τ2 ∈ fields(Θ(τ )) τ2 ≤ τ1

ϕ;ψ ;Θ |= has(τ ,x : τ1)

∃α .ϕ ∪ {α 7→ τ };ψ ∪ {x 7→ α };Θ |= K

ϕ;ψ ;Θ |= def x : τ in K

ϕ;ψ ;Θ |= K1 ϕ;ψ ;Θ |= K2

ϕ;ψ ;Θ |= K1 ∧ K2

ϕ;ψ ;Θ |= Θ(τ ) = ϕ(α)

ϕ;ψ ;Θ |= typedef τ as α

Fig. 10. The semantics of constraints.

⟨⟨ ℓ : τ ,M ⟩⟩e = ρ(ℓ) ≡ τ
⟨⟨x : τ ,M ⟩⟩e = typeof (x ,τ )

⟨⟨E->x : τ ,M ⟩⟩e = ∃α1α2α3.⟨⟨E : α1,M ⟩⟩e ∧ α1 ≡ α∗
2
∧ has(α2,x : α3) ∧ α3 ≡ τ

⟨⟨ ∗E : τ ,M ⟩⟩e = ∃α .⟨⟨E : α ,M ⟩⟩e ∧ α ≡ τ ∗

⟨⟨&E : τ ,M ⟩⟩e = ∃α α ′.⟨⟨E : α ′,M ⟩⟩e ∧ α ≡ α ′∗ ∧ α ≡ τ
⟨⟨E = E ′ : τ ,M ⟩⟩e = ∃α1α2.⟨⟨E : α1,M ⟩⟩e ∧ ⟨⟨E ′ : α2,M ⟩⟩e ∧ ⟨⟨E,α1,E

′,α2,M,= ⟩⟩kd
⟨⟨E ⊕ E ′ : τ ,M ⟩⟩e = ∃α1α2.⟨⟨E : α1,M ⟩⟩e ∧ ⟨⟨E ′ : α2,M ⟩⟩e ∧ ⟨⟨E,α1,E

′,α2,M, ⊕ ⟩⟩kd
∧ ⟨⟨τ ,M(E ⊕ E ′) ⟩⟩sel ∧ typeof (⊕,α1 → α2 → τ )

⟨⟨E; S,τ ,M ⟩⟩s = ∃α .⟨⟨E : α ,M ⟩⟩e ∧ ⟨⟨ S,τ ,M ⟩⟩s
⟨⟨τ x ; S,τ ,M ⟩⟩s = ∃α .typedef τ as α ∧ def x : τ in ⟨⟨ S,τ ,M ⟩⟩s

⟨⟨τ f ((τ i x i )i=1..n ){S ′}; P ,M ⟩⟩d = ∃α i=1..n .(typedef τ i=1..n as α i=1..n ) ∧ de f f : τ i=1..n → τ in
(de f x i=1..n : τ i=1..n in ⟨⟨ S ′,τ ,M ⟩⟩s ∧ ⟨⟨ P ,M ⟩⟩d )

Fig. 11. Constraint for expressions ⟨⟨E : τ ,M ⟩⟩e , statements ⟨⟨ S,τ ,M ⟩⟩s and declarations ⟨⟨D,M ⟩⟩d .

All rules carry along a Table M, which is populated by traversing expressions. But only two

rules, which deserve special attention, consult this table
3
: binary expressions in general, E ⊕ E ′

; and

the assignment expression, specifically, E = E ′
(from now on, we shall refer to this last one simply

as assignment). These rules may involve types that are not necessarily unifiable. In a complete

program, where semantic information is available, such types are distinguishable. However, due to

missing declarations, we need an alternative way to ignore constraints that can lead to erroneous

unification. TableM, explained in the following section, helps us accomplish this task.

3.2.1 A Lattice for Constraint Generation. Apart from having an integral type in C, the value

0 is the null pointer constant [ISO-Standard 2011]{§6.3.2.3.3}. Hence, an assignment between a

pointer and 0 is legal. However, we cannot unify these two types because the syntax of integers

and pointers is not interchangeable. For instance, a must be a pointer in *a=10, and an arithmetic

type in b * a. Therefore, our constraint generator must distinguish between pointer and integer

variables. And yet, this distinction requires knowledge about type information, which might not

be available in our case. To deal with this situation, we classify program expressions according

to a lattice of pre-types LM = ⟨{u, s,p,n,m}, <,∨,⊥ = u,⊤ = m⟩, where u=undefined, s=scalar,
p=pointer, n=numeric, and m=malformed. Every C type has a pre-type, but not all pre-types are C

types. For instance, we might classify a particular expression as p even though the underlying type

of the pointer is unknown. Non-scalar types are pre-typed as u. An undeclared variable pre-typed

as n defaults to int. Fig. 12 (c) gives our lattice’s partial order.
The classification of expressions, which happens prior to constraint generation, faces two

complications. First, we may encounter names for which no declaration exists. Second, we may

encounter names with an existing declaration whose type must be respected. For these reasons,

3
Our description is for µC . In actual C, matching of function arguments and formal parameters also need to be accounted.
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s

n p

m

u

void foo() {
    T b;
    int i;
    b = &i;
}

void foo() {
    T a;
    a = 0;
}

void foo() {
    c = 0;
    *c = 10;
    c * 10;
}

void foo() {
    T c;
    c = 0;
    *c = 10;
}

(b) (c)(a) (d) (e)
Fig. 12. The lattice LM of pre-types is in the center (c). (a,b,d,e) Mapping of expressions to points inM. The
order in which expressions are evaluated by the rules in Figure 13 is irrelevant.

our classification algorithm first attempts to categorize an expression by looking for declared types.

Whenever it fails due to missing information, we employ the syntax-directed rules of Figure 13,

which mimic restrictions imposed on actual C operators. These rules, for example, categorize obj
as p if an expression obj->m is present in the program’s text; and likewise categorize both x and y
as s if they appear in an x | | y expression. This classification phase works as a “pre-inference”. It

produces a map that associates every AST node that constitutes an expression with elements of

LM . We useM(node) to denote this mapping.

Once we have built M, we consult it with two purposes. The first is to decide whether we keep

or drop a constraint. When keeping a constraint, it is necessary to consider two cases. Binary

expressions such as E ⊕ E ′
lead to equivalence constraints like τ1 ≡ τ2. Assignments such as

E = E ′
lead to subtyping constraints like τ1 ≤ τ2 (the meaning of subtyping is further discussed in

Section 3.3). Below we define a function ⟨⟨ . ⟩⟩kd , which consults M:

⟨⟨E,α ,E ′,α ′,M,bin_optr ⟩⟩kd =


⊤, if M(E) ,M(E ′)

α ≡ α ′, if bin_optr is a binary expression(⊕)
α ′ ≤ α , if bin_optr is the assignment expression(=)

A constraint is dropped to avoid an incorrect unification arising from binary expressions. Four

categories of binary operators, whose representatives are multiplication *, addition +, logical OR | |,

and assignment =, are recognized. Figure 13 treats each category differently. Operators in the *

category only apply to arithmetic types. In such cases, we can generate a type equivalence between

the E and E ′
. Operators in the categories + and | | can work with a mix of numeric values and

pointers, and the generation of a type equivalence can trigger an undesired conversion. This risk

of mismatch between arithmetic types and pointers exists with assignments as well, since 0 is an
integer value, but also the null pointer constant.

Whenever one of the sides from an expression E⊕E′
or E = E′

is ranked as p and the other as n, e.g.,
M(E) = p andM(E′) = n, we say that this expressions is inconsistent. A constraint associated with

an inconsistent expression must be dropped, otherwise it will trigger an incompatible unification

(called over-unification by Noonan et al. [Noonan et al. 2016]). Since this elimination occurs during

generation stage, the effect to the solver is that the constraint never existed. Furthermore, n and p
are ranked higher than s, so a constraint more restricting than the one being dropped must exist,

unless the program is ill-typed (and a unification error will eventually be thrown). As Lemma 3.10

states, we do not lose information by dropping constraints. Example 3.9 illustrates an inconsistent

expression, c = 0.
The second purpose for which we consultM is to select the right pre-type to annotate the result

of a binary expression E ⊕ E ′
; a action performed by the function ⟨⟨ . ⟩⟩sel . For assignments E = E ′

,
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(x, L, M) → M ∪ {x : L } (ℓ, L, M) → M ∪ {ℓ : n }
(E1, L ∨ p, M) → M′

(E1->x, L, M) → M′ ∪ {E1->x : u }

(E1, L ∨ s, M) → M′ (E2, L ∨ s, M′) → M”

(E1 | |E2, L, M) → M” ∪ {E1 | |E2 : M”(E1) → M”(E2) → n }

(E1, L ∨ n, M) → M′ (E2, L ∨ n, M′) → M”

(E1 ∗ E2, L, M) → M” ∪ {E1 ∗ E2 : n → n → n }

(E, L ∨ u, M) → M′

(&E, L, M) → M′ ∪ {&E : p }

(E1, L ∨ s, M) → M′ (E2, L ∨ s, M′) → M”

(E1 + E2, L, M) → M” ∪ {E1 + E2 : M”(E1) → M”(E2) → (M”(E1) ∨ M”(E2))}

(E, L ∨ p, M) → M′

(∗E, L, M) → M′ ∪ {∗E : u }

(E2, L ∨ u, M) → M′ (E1, L ∨ M′(E2), M′) → M”

(E1 = E2, L, M) → M” ∪ {E1 = E2 : M”(E2) → M”(E1) → M”(E1)}

Fig. 13. Rules used to populate the tableM. These rules correspond to restrictions imposed by C on operands
of such expressions.

def  f : (void) in
typedef  T as !2 ∧

def  c : !2 in
typeof(c, !3) ∧
!4 ��int ∧
�∧

D

void f

S'
S

S'

=

c 0

P

T c

S

*

c 10

=S

1

2

3

4

5

6

11

1 2 43 5

6

7

8

9

10

typeof(c, !7) ∧
!7 � !5* ∧
!6 ��int∧
!6 ≤ !5 ∧
!5 ��int 

7

8

9

10

11

Fig. 14. Constraints produced for the program seen in Figure 2 (c). Numbers indicate which AST nodes have
produced each constraint. Constraint 6 replaces an incorrect unification between α3 ≡ α4. Alpha creation is
omitted to avoid cluttering.

this query is not necessary, since the resulting pre-type comes from the left-hand-side operand.

⟨⟨τ ,L ⟩⟩sel =


τ ≡ pointer, if L is p

τ ≡ numeric, if L is n

⊤, otherwise (always satisfiable)

Example 3.9. Figure 14 shows the constraints produced for the program in Figure 2 (c). One of

them, e.g., ⊤ at node 6, is dropped to prevent unifying α4 (int) and α3 (int*).

Lemma 3.10. Given an expression E in a µC program P , if M(E) is p (resp. n), then ⟨⟨ P ,M ⟩⟩d
generates constraints that bind E to a pointer (resp. a numeric) type.

3.3 Challenge 3 – Handling Asymmetries in Type Equivalences
The C language lets programmers decorate a type with a type qualifier [ISO-Standard 2011]{§6.7.3},

such as const or volatile4. These qualifiers might cause assignments to be unidirectional, further
complicating unification. For instance, the meaning of const is that a variable cannot be modified

after initialization. Thus, in Figure 3 (a) it is possible to type T1 as int or as const int5.
At first sight, the choice between int and const int is analogous in program (b). However, in this

latter case, the only valid type for T2 is int. Typing T2 as const int yields an illegal program: the

4
There are differences between volatile and const. Program P = [void f() { int x; volatile int y; y = x; }] is valid, but had
we used const, it would be invalid. Nevertheless, both qualifiers share typing rules and we focus the discussion on const.
5
Functions need to be taken care of in a similar manner: T must be const int in program P =

[void g(T∗ v); void f() { const int∗ p; g(p); }]. Arguments correspond to the right-hand-side of an assignment, while formal

parameters to the left-hand-side (the return is handled analogously).
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void f() {
    T1 x;
    const int* cp = x;
    int* ncp = x;
    T2 y = cp;
}

α2 ≡ α4 ∧ α2 ≡ α6 ∧ α3 = const	int* 
∧ α5 = int* ∧ α3 ≡ α8 ∧ α4 ≡ α3 ∧ 
α6 ≡ α5 ∧ α8 ≡ α7

K≤ = α2 ≡ α4 ∧ α2 ≡ α6 ∧ α3 = const	int* 
         ∧ α5 = int* ∧ α3 ≡ α8
K≤ = α4 ≤ α3 ∧ α6 ≤ α5 ∧ α8 ≤ α7

Goal: find types for the type variables in ! = {x: α2, cp: α3, ncp: α5, y: α7}.

(a) (b) (c)
Fig. 15. (a) Partially available sources: we are missing definitions of T1 and T2. (b) Constraints produced by a
classic type inference system. (c) The constraints that we produce.

immutability promise made by b is broken in expression b = 10. This observation, together with the

one made for program (a), leads us to the following conclusion: assignment of non-pointer types

do not require that qualifiers are inferred. We call this the qualifier-neutral strategy.
Forgetting about const is a convenience also allowed in program (c) of Figure 3. However, w is

now a pointer. This means that there exist two variables referring to the same memory location

and our qualifier-neutral strategy cannot be used. Nevertheless, it is correct to discard const in
this case due to a different reason: implicit conversions from non-qualified to qualified pointers

are permitted, if the latter are more restricted than the former [ISO-Standard 2011]{§6.3.2.3-2}.

Furthermore, expression *c = 10 in program (c) makes typing T3 as int* the only valid solution.

Finally, let us consider the program in Figure 3 (d), where, again, a common memory location

is referenced by two different variables. However, inferring T4 without const yields an illegal

program in this case. The incorrectness is due to a conversion from a qualified to a non-qualified

pointer, which may only be done explicitly: for const, this would break the promise of immutability.

Therefore, from this asymmetry in implicit conversions we can derive the following conclusion:

assignment between pointers must account for type qualifiers. Specifically, qualification on the

right-hand-side must be propagated to the left-hand-side. We call this the qualifier-aware strategy.

3.3.1 Subtyping and Unification. The behaviour of pointer-related implicit conversions mimics

a subtyping relation. By interpreting τ * as a subtype of const τ *, we establish the partial order

τ * ≤ const τ *. This ordering means that a τ * can be directly assigned to a const τ *, but an
assignment on the opposite direction requires an explicit cast. Even though it is counter-intuitive

to think of non-constant pointers being a subset of constant pointers, this subtyping relation meets

Liskov’s substitution principle: a τ * can safely be used in a context where a const τ * is expected.
The premise of this relation, sustained by the qualifier-neutral and qualifier-aware strategies, is the

reason why, in Figure 11, we generate constraints for assignments in the form of type inequalities,

instead of type equivalences. To make our discussion general, we now rephrase the qualifier-neutral

and qualifier-aware strategies as subtyping-neutral and subtyping-aware strategies, respectively.
A subtyping relation originates from a type inequality constraint. Constraints, their syntax and

semantics, were defined in section 3.2 as a first order logic model representing the type definitions

of µC . To infer typing information that is missing from a partial program, we must solve those

constraints. However, the presence of subtyping relations prevents us from accomplishing such a

task via classical unification [Robinson 1965], which relies on the symmetry of type equivalences.

Example 3.11. Figure 15 (b) shows the constraints that would be produced for the program in

Figure 15 (a) if we did not have inequality constraints. If we solved the constraints in Fig. 15 (b),

then we would bind x to const int*, which is incorrect. This typing assignment is forbidden by the

C standard. kcc [Ellison and Rosu 2012; Hathhorn et al. 2015; Inc. 2017], which adheres strictly to it,

refuses the program. gcc and clang are more permissive: albeit with warnings, compilation succeeds.
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To deal with this problem, we separate constraints into two groups, K and K≤ , as Figure 15 shows.

These constraints shall be solved by the rules in Figure 16, which we explain in Section 3.4.

Unification and subtyping have been studied by Kaes [Kaes 1992] and Smith [Smith 1994]. In their

systems, however, subtyping constraints are separately solved after types have been instantiated.

Recently, Dolan and Mycroft [Dolan and Mycroft 2017] introduced biunification, to deal with

subtyping from first principles. As a means to solve inequalities, Dolan and Mycroft define the

notion of positive types, τ+, and negative types, τ−, which respectively correspond to output and

input. In their system, constraints are of the form τ+ ≤ τ− and, instead of plain substitutions,

biunification employs bisubstitutions. Bisubstitutions come with additional complexity: they apply

independently on positive/negative types and result in an algebra of ⊓ and ⊔ lattice operators.

A Two-Phases Unification Approach. While Dolan and Mycroft’s biunification solves µC’s con-
straints, we chose to develop an alternative algorithm that deals with both type equivalence and

inequality simultaneously, within a single solving method. Even though a type equivalence could

be replaced by two type inequalities, type equivalences let us divise a simpler method to solve type

inequalities, given our restricted form of subtyping. Our key idea to deal with subtyping without

bisubstitutions is to perform unification twice, but each time with a different unification algorithm:

• Uc is essentially the classical unification [Martelli and Montanari 1982].

• Us is a unification algorithm that incorporates the subtyping strategies we discussed.

UnificationUc is initially applied on type equivalences. On a purpose similar to that of Peyton

Jones et al. [Peyton Jones et al. 2006], this allows us to benefit from concrete types’ declarations

which are available in the partial program. The substitutions produced are applied on the remaining

constraints. Given that concrete types are now available, we used them to sort the inequality

constraints according to a partial order. Sorting constraints produce a new list of constraints where

positive types of a higher-order appear before negative types of a lower-order. As an example, when

constraints are sorted, const τ * ≤ αx would be positioned in the list before constraint αy ≤ τ *.
The fact that inequality constraints are ordered enables us to unify them, but nowwith unification

Us . Even though the constraints being unified are that of inequalities, the subtyping relation will

be respected, since the order in which constraints appear is the order in which type variables are

bound, which, in turn, is determined by our partial order. Borrowing Dolan’s notation, in Us , the

subtyping-aware strategy becomes active for constraints involving τ * as a positive type. Otherwise,
when a τ * is a negative type, subtyping-neutral strategy is the active one.

3.4 Challenge 4 – Solving Constraints
In section 3.2, we defined the syntax and the semantics of constraints as a first order logic model

representing the type definitions of µC . To find typing information that is missing in a given

µC program, we must solve those constraints – a task that we accomplish via first order unifica-

tion [Robinson 1965]. Figure 16 shows a rewriting system that produces an equivalent constraint

in a solved form. Constraints in solved forms are conjunctions of type equalities and field access

relations. Notation x denotes sequences of elements from set X = {x1, ...,xn}. We abuse the nota-

tion to use set operations on sequences, e.g., X ∩ Y . We remind the reader that fv(τ ) is the set of
variables that are free in τ . This notation lets us state Definition 3.12:

Definition 3.12 (Solved form). A solved form is a constraint ∃α .(β ≡ τ ) ∧ [has(τk ,xk : τ ′k )], where

fv(τ ) ⊆ α and α ∩ β = ∅.

A solved form is a conjunction of type equivalences and field access constraints. It represents a

solution to our type inference problem because: (i) type equivalences can be understood as type
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(a) Structural Rules
⟨ψ ; Θ; (∃α .K1) ∧ K2; K≤⟩ { ⟨ψ ; Θ; ∃α .(K1 ∧ K2); K≤⟩ where α < fv(K2)
⟨ψ ; Θ; K1 ∧ (∃α .K2); K≤⟩ { ⟨ψ ; Θ; ∃α .(K1 ∧ K2); K≤⟩ where α < fv(K1)
⟨ψ ; Θ; K ∧ K ′

; K≤⟩ { ⟨ψ2; Θ2; K1 ∧ K2; K≤⟩
where ⟨ψ ; Θ; K ; K≤⟩ { ⟨ψ1; Θ1; K1; K≤⟩ and ⟨ψ1; Θ1; K

′
; K≤⟩ { ⟨ψ2; Θ2; K2; K≤⟩

(b) Preprocessing Phase
⟨ψ ; Θ; K ∧ typedef τ as α ∧ K ′

; K≤⟩ { ⟨ψ ; Θ ∪ {τ 7→ α }; K ∧ K ′
; K≤⟩

⟨ψ ; Θ; K ∧ def x : τ ∧ K ′
; K≤⟩ { ⟨ψ ; Θ; (K ∧ K ′)[x 7→ τ ]; K≤⟩

⟨ψ ; Θ; K ∧ typeof (x ,τ ) ∧ K ′
; K≤⟩ { ⟨ψ ∪ {x 7→ τ }; Θ; K ∧ψ (x) ≡ τ ∧ K ′

; K≤⟩
⟨ψ ; Θ; K ∧ τ ≡ τ ′ ∧ K ′

; K≤⟩ { ⟨ψ ; Θ; K ∧ Θ(τ ) ≡ Θ(τ ′) ∧ K ′
; K≤⟩

⟨ψ ; Θ; K ∧ τ ≤ τ ′ ∧ K ′
; K≤⟩ { ⟨ψ ; Θ;K ∧ K ′

; K≤ ∧ Θ(τ ) ≤ Θ(τ ′)⟩
∀i, j .⟨ψ ; Θ; K ∧ has(τ ,x : τi ) ∧ K ′ ∧ has(τ ,x : τj ) ∧ K ′′

; K≤⟩ { ⟨ψ ; Θ; τi ≡ τj ∧ K ∧ K ′ ∧ K ′′
; K≤⟩

(c) First Unification (Uc )
⟨ψ ; Θ; α ≡ τ ∧ K ; K≤⟩ { ⟨ψ [α 7→ τ ]; Θ[α 7→ τ ]; K[α 7→ τ ]; K≤[α 7→ τ ]⟩
⟨ψ ; Θ; τ ≡ α ∧ K ; K≤⟩ { ⟨ψ ; Θ; α ≡ τ ∧ K ; K≤⟩
⟨ψ ; Θ; τ1* ≡ τ2* ∧ K ; K≤⟩ { ⟨ψ ; Θ; τ1 ≡ τ2 ∧ K ; K≤⟩
⟨ψ ; Θ; const τ1 ≡ const τ2 ∧ K ; K≤⟩ { ⟨ψ ; Θ; τ1 ≡ τ2 ∧ K ; K≤⟩
⟨ψ ; Θ; τ ≡ τ ∧ K ; K≤⟩ { ⟨ψ ; Θ; K ; K≤⟩
⟨ψ ; Θ; τ1 → τ2 ≡ τ ′

1
→ τ ′

2
∧ K ; K≤⟩ { ⟨ψ ; Θ; τ1 ≡ τ ′

1
∧ τ2 ≡ τ ′

2
∧ K ; K≤⟩

⟨ψ ; Θ; ⊤ ∧ K ; K≤⟩ { ⟨ψ ; Θ; K ; K≤⟩

(d) Inequalities Ordering
⟨ψ ; Θ; K ; K≤ ∧ const t∗ ≤ τ ∧ K ′

≤⟩ { ⟨ψ ; Θ; K ; const t∗ ≡ τ ∧ K≤ ∧ K ′
≤⟩

⟨ψ ; Θ; K ; K≤ ∧ τ ≤ const t∗ ∧ K ′
≤⟩ { ⟨ψ ; Θ; K ; K≤ ∧ K ′

≤ ∧ τ ≡ const t∗⟩
⟨ψ ; Θ; K ; K≤ ∧ τ ≤ τ ′ ∧ K ′

≤⟩ { ⟨ψ ; Θ; K ; K≤ ∧ τ ≡ τ ′ ∧ K ′
≤⟩

⟨ψ ; Θ; K ; τ ≡ τ ′ ∧ K≤⟩ { ⟨ψ ; Θ; τ ≡ τ ′ ∧ K ; K≤⟩
⟨ψ ; Θ; K ; τ ≡ τ ′⟩ { ⟨ψ ; Θ; τ ≡ τ ′ ∧ K ; ⊤⟩

(e) Second Unification (Us )
...
⟨ψ ; Θ; τ1 ≡ const τ2 ∧ K ; ⊤⟩ { ⟨ψ ; Θ; τ1 ≡ τ2 ∧ K ; ⊤⟩
⟨ψ ; Θ; const τ1 ≡ τ2 ∧ K ; ⊤⟩ { ⟨ψ ; Θ; τ1 ≡ τ2 ∧ K ; ⊤⟩

Fig. 16. Constraint solving split in five groups of rules. Rules for the second unification (Us ) include all the
rules in the first unification (Uc ), plus the two rules shown in part (e). In particular, the ellipsis, ..., indicate
that the rules in part (e) pattern match after those in part (c).

substitutions that unify, yielding most general types, and (ii) field access contain the information

necessary to reconstruct the structure of missing records. Example 3.13 illustrates this definition.

Example 3.13. The solved form for the example seen in Figure 14 is: ∃α2,α3,α4,α5,α6,α7.α2 ≡
α7 ∧ α4 ≡ int ∧ ⊤ ∧ α2 ≡ α7 ∧ α7 ≡ α5* ∧ int ≡ α6 ∧ α5 ≡ α6 ∧ α5 ≡ α6. Mapping back the solution

of these constraints to the program in Figure 2, we conclude that T, the type of variable c, is int*.

To produce solved forms, the constraint solver of Figure 16 rewrites solver configurations. A
configuration is a 4-tuple formed by finite mappingsψ and Θ, plus two constraints K and K≤ . K is a

conjunction of all the equivalence constraints, e.g., τ1 ≡ τ2. K≤ is a conjunction of all the inequality

constraints, e.g., τ1 ≤ τ2. The result of constraint solving is a final configuration, which is a solver

configuration ⟨ψ ; Θ; K ; K≤⟩ where K and K≤ are constraints in solved form or the unsatisfiable

constraint ⊥. Our solving process contains rules that are split into five groups:

• Structural Rules – Figure 16 (a): rules from this group are used at the beginning of the solving

process. They introduce fresh type variables that are carried over across constraints.

• Prepocessing Phase – Figure 16 (b): these rules populate contexts with variables and types,

and replace “has" constraints with equivalences relating fields of structs that should unify.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 29. Publication date: January 2018.



Inference of Static Semantics for Incomplete C Programs 29:15

= {x: α2, cp: α3, ncp: α5, y: α7}
= α2 ≡ α4 ∧ α2 ≡ α6 ∧ α3 = const)int* ∧ α5 = int* ∧ α3 ≡ α8
= α4 ≤ α3 ∧ α6 ≤ α5 ∧ α8 ≤ α7

First Unification - Round 1
Ψ  
K     
K≤ 

First Unification - Round 2
Ψ  
K     
K≤ 

First Unification - Round 3
Ψ  
K     
K≤ 

First Unification - Round 4
Ψ  
K     
K≤ 

First Unification - Round 5
Ψ  
K     
K≤ 

= {x: α2, cp: α3, ncp: α5, y: α7}
= α2 ≡ α4 ∧ α2 ≡ α6 ∧ α3 ≡ const)int* ∧ α5 ≡ int* ∧ α3 ≡ α8
= α4 ≤ α3 ∧ α6 ≤ α5 ∧ α8 ≤ α7

First Unification - Round 6
Ψ  
K     
K≤ 

= {x: α4, cp: α3, ncp: α5, y: α7}
= α4 ≡ α6 ∧ α3 ≡ const)int* ∧ α5 ≡ int* ∧ α8 ≡ α3
= α4 ≤ α3 ∧ α6 ≤ α5 ∧ α8 ≤ α7

= {x: α6, cp: α3, ncp: α5, y: α7}
= α3 ≡ const)int* ∧ α5 ≡ int* ∧ α8 ≡ α3
= α6 ≤ α3 ∧ α6 ≤ α5 ∧ α8 ≤ α7

= {x: α6, cp: const(int*, ncp: α5, y: α7}
= α5 ≡ int* ∧ α8 ≡ const(int*
= α6 ≤ const)int* ∧ α6 ≤ α5 ∧ α8 ≤ α7

= {x: α6, cp: const)int*, ncp: int*, y: α7}
= α8 ≡ const)int*
= α6 ≤ const)int* ∧ α6 ≤ int* ∧ α8 ≤ α7

= {x: α6, cp: const)int*, ncp: int*, y: α7}
= T
= α6 ≤ const)int* ∧ α6 ≤ int* ∧ const(int* ≤ α7

Inequalities Ordering
Ψ  
K     
K≤ 

Second Unification - Round 1
Ψ  
K     
K≤ 

Second Unification - Round 2
Ψ  
K     
K≤ 

= {x: α6, cp: const)int*, ncp: int*, y: α7}
= T
= const)int* ≤ α7 ∧ α6 ≤ int* ∧ α6 ≤ const)int*

= {x: α6, cp: const)int*, ncp: int*, y: α7}
= const)int* ≡ α7 ∧ α6 ≡ int* ∧ α6 ≡ const)int*
= T

= {x: α6, cp: const)int*, ncp: int*, y: const(int*}
= α6 ≡ int* ∧ α6 ≡ const)int*
= T

Second Unification - Round 3
Ψ  
K     
K≤ 

= {x: int*, cp: const)int*, ncp: int*, y: const)int*}
= int* ≡ const)int*
= T

Second Unification - Round 4
Ψ    
K     
K≤ 

= {x: int*, cp: const)int*, ncp: int*, y: const)int*}
= T
= T

void f() {
    T1 x;
    const int* cp = x;
    int* ncp = x;
    T2 y = cp;
}

Definitions after Preprocessing Phase
Ψ  
K     
K≤ 

Fig. 17. Solving constraints for the program displayed on the top-right corner. We omit Θ from the unification
rounds, as it bears no effect on this example. We find that T1 ≡ int∗, and T2 ≡ const int∗.

• First Unification – Figure 16 (c): these rules perform type inference proper, to unify type

equivalences, through unification Uc , which we have introduced in Section 3.3.1.

• Inequalities Ordering – Figure 16 (d): the constraints that constitute the conjunction K≤ need

to be ordered before converted to standard equivalences, as we explained in Section 3.3.1.

The rules from this group perform this sorting operation.

• Second Unification – Figure 16 (e): in this phase we conclude type inference. Because the

ordering of constraints implies the partial order of our subtyping relation, type inequalities

can be unified just as if they represented type equivalences. In this process, we discard type

qualifiers; hence, letting types bound to, say, const int*, unify with int*.

The constraint solver is called with an initial environment Θinit , containing the definitions of

builtin types (int, char, etc). We let{⋆
denote the reflexive, transitive closure of{. Theorem 3.14

states that our solver is confluent and strongly normalizing. A complete example of our solving

process can be seen in Figure 17, which concludes Example 3.11.

Theorem 3.14 (Confluence and termination). For any constraint K , there existsψ ,Θ and K ′

such that ⟨ψ ; Θinit ; K ; ⊤⟩ {
⋆ ⟨ψ ; Θ; K ′

;K≤⟩ and ⟨ψ ; Θ; K ′
; K≤⟩ is a final configuration.
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Our solver preserves the semantics of constraints seen in Figure 10. To state such property, we

define some notation – further used in µC’s type system, in Section 3.4.1. A constraint K1 entails a

constraint K2, written as K1 ⊩ K2, if and only if, for every ϕ,ψ and Θ, the assertion ϕ; ψ ; Θ |= K1

implies ϕ; ψ ; Θ |= K2. We write K1 ≈ K2 (equivalence), if and only if, K1 ⊩ K2 and K2 ⊩ K1 holds.

Theorem 3.15 (Constraint solver soundness). For all ψ , Θ, K , K≤ , ψ ′, Θ′, K ′, and K ′
≤ , if

⟨ψ ; Θ; K ,K≤⟩ { ⟨ψ ′
; Θ′

; K ′,K ′
≤⟩ then K ≈ K ′.

Dealing with insufficient information. Our solver is sound, but not complete. Some partial

programs do not have enough information to instantiate all constraint variables to concrete µC types.

We call such uninstantiated variables orphans. Definition 3.16 introduces this concept.

Definition 3.16 (Orphan variables). Let S = ⟨ψ ; Θ; K⟩ be a final solver configuration, such that

K = ∃α .[α ≡ τ ] ∧ [has(τ , x : τ )] is satisfiable. Let ϕ = [α 7→ τ ] be a finite mapping between type

variables and types built from solved form type equivalences. The set of orphan variables of S ,
fov(S), is defined as:

fov(S) =


⋃
[x 7→α ]∈ψ

fv(ϕ (α))

 ∪


⋃
[τ ′ 7→α ]∈Θ

fv(ϕ (α))


Example 3.17. The type variables associated with name T in Figures 1 (d) and T3 in Figure 4 (c)

will be left a orphan and pointer to orphan, respectively, because none of these programs gives us

any syntactic hint about the nature of these types.

As discussed in Challenge 4, uninstantiated variables cannot appear in reconstructed programs.

Our approach to overcome this problem is inspired by Haskell 98. The Haskell 98 inference engine

defaults uninstantiated kind variables, during kind inference, to⋆, the Haskell kind for types [Faxén
2002; Peyton Jones et al. 2003]. Similarly, we have two defaulting rules, whose use is determined by

two distinct cases: i) the entire declaration of an orphan variable is missing; or ii) only the declared

type of an orphan variable is absent. An orphan variable that has no declaration may be instantiated

with any type; we use int. Differently from that, if the declaration of an orphan variable is present,

but the definition of its type is missing, then we instantiate it with a type that honours the name of
the missing type. Example 3.18 illustrates both cases.

Example 3.18. Variable a is an orphan in program [void f(){a; }]. We instantiate it by creating a

declaration of a with type int, due to defaulting rule (i). For an example of defaulting rule (ii), b is

an orphan in program [void g(){struct T b; b; }]. To instantiate b, we define the type struct T as

struct T {int dummy; }6.

Orphan variables do not hinder our reconstruction process. According to Theorem 3.19, there

is no flow of information, in Hunt-Sands sense [Hunt and Sands 2006], between orphan and non-

orphan variables. Theorem 3.19 is equivalent to showing that: (i) orphans do not control conditional

statements; (ii) orphans do not index memory accesses; and (iii) there is no assignment between

orphan and non-orphan variable.

Theorem 3.19. There is no flow of information between orphan and non-orphan variables.

6
A dummy field is created because the C standard requires that a struct has a non-empty field list [ISO-Standard

2011]{§6.7.2.1.8}.
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K | Γ ⊢ ℓ : ρ(ℓ)
{T l }

K | Γ ⊢ E : τ ′

K ⊩ ∃α .τ ′ ≡ α∗ ∧ has(α ,x : τ )

K | Γ ⊢ E->x : τ
{Th }

K | Γ ⊢ D K | Γ ⊢ P

K | Γ ⊢ D P
{TDSeq }

K | Γ ⊢ E : τ1 K | Γ ⊢ E ′ : τ2
Γ(⊕) = τ1 → τ2 → τ

K | Γ ⊢ E ⊕ E ′ : τ
{Tbop }

K | Γ ⊢ E1 : τ K | Γ ⊢ E2 : τ
′ K ⊩ τ ′ ≤ τ

K | Γ ⊢ E1 = E2 : τ
{TAssiдn }

Γ(x) = τ K ⊩ ∃α .α ≡ τ

K | Γ ⊢ x : τ
{Tv }

K | Γ ⊢ E : τ ′ K ⊩ τ ′ ≡ τ ∗

K | Γ ⊢ ∗E : τ
{Tp }

K | Γ ⊢ E : τ ′ K ⊩ τ ′ ≤ τ

K | Γ ⊢ E : τ
{TSub }

K | Γ ⊢τ ′ S K | Γ ⊢τ ′ S
′

K | Γ ⊢τ ′ S S ′
{TSeq }

K ⊩ ∃α .typedef τ as α K | Γ,x : τ ⊢τ ′ S
′

K | Γ ⊢τ ′ τ x ; S
′

{T LV ar }

K ⊩ ∃α .typedef τ α K ⊩ (∃αi .typedef τi as αi )
i=0..n

K | Γ, f : τ0, ...,τn → τ , x0 : τ0, ...,xn : τn ⊢τ S

K | Γ ⊢ τ f (τi xi )
i=0..n {S}

{T Fun }
K | Γ ⊢ E : τ

K | Γ ⊢ &E : τ ∗
{Td }

Fig. 18. Typing relations for µC .

Variadic functions and generic selections. Variadic functions are inferred in the following

manner. Constraints of function types are ordered by increasing number of arguments. During

unification of those arguments, errors due to incompatible types or to inconsistent parameter-count

are caught. Every function inψ for which such errors are identified is made variadic - the ellipsis,

..., is placed at the index that triggered the error. Variadic functions such as those from the printf
family can be registered into PsycheC so that the format-specifier string is used to determine the

type of variadic arguments.

Relying on unification errors due to incompatible argument types helps us handle C11’s generic

selection [ISO-Standard 2011]{§6.5.1.1}. But since a variadic function must have at least one named

argument [ISO-Standard 2011]{§6.7.6.3/5-9}, for an error occurring at the first index PsycheC
#defines a _Generic macro that forwards to artificial functions, one for each instantiated argument

type. When _Generic appears in the program, either because the source was preprocessed or the

keyword was directly used
7
, we parse the call but constraints are not generated for arguments.

3.4.1 Type System. Figure 18 shows type system rules for µC programs. Such rules are param-

eterized by a typing environment Γ, and a set of constraints K . Following standard practice, we

let Γ,x : τ denote the inclusion of entry x : τ in typing context Γ and Γ(x) represent the type
associated with symbol x in Γ or a fresh type variable, if no such entry is found. Formally:

Γ,x : τ = {x : τ } ∪ {x ′
: τ ′ | x ′

: τ ′ ∈ Γ ∧ x ′ , x}

Γ(x) =

{
τ if x : τ ∈ Γ
α fresh otherwise

Given a µC program p, we say that K | Γ ⊢ p is provable, if: (i) p is a well typed program in typing

context Γ and (ii) constraintK is satisfiable. The typing judgement used in statements (⊢′τ ) is slightly

different than the judgements used for expressions and declarations. We use ⊢τ in statements

because we need to record the return type τ of the function declaration that encloses the statement

being typed. The τ in K | Γ ⊢τ S indicates that statement S is well typed in K , Γ and it occurs in a

function with return type τ .

7
A generic selection is a primary expression [ISO-Standard 2011]{§6.5.1.6}. While normally used in macro definitions, the

_Generic keyword is a compiler symbol, not a preprocessor one.
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A completeness theorem for constraint generation does not hold, since we cannot guarantee

that a constraint generated for a partial program is entailed by some K that is used to construct

a typing derivation for the original program. This happens because orphan variables may not be

convertible to original program types. Nevertheless, we can provide a strong guarantee about the

reconstructed programs. Theorem 3.20 states this guarantee. The theorem relates the constraint

generation process of Section 3.2 and the type system rules of this section. According to the theorem,

the generated constraints are sufficient to ensure a type system derivation according to rules in

Figure 18.

Theorem 3.20 (Soundness of constraint generation). Let Ppar = D P be a valid µC program
and K = ⟨⟨ Ppar , M ⟩⟩d its corresponding constraint system. If K is satisfiable, there exists Γ and K ′

s.t. K ′ | Γ ⊢ Ppar holds and K ′ is the solved form for K with all orphan variables instantiated.

4 THE IMPLEMENTATION OF PSYCHEC
PsycheC consists of two components. Type inference is implemented in Haskell through a custom-

made constraint solver, as described in Section 3.4. The AST visitor that generates constraints,

mentioned in Section 3.2, is implemented in C++. The parser from which our AST is obtained

is a modified and extended version of the parser from the Qt Creator IDE [Project 2017b]. Our

implementation is publicly available at https://github.com/ltcmelo/psychec -under an open-source

license.

The C Language. The first standardized version of C, published by ANSI, is known as C89 [ANSI-
Standard 1989]

8
. Since then, two major revisions of the language have been published by ISO. They

are respectively known as C99 [ISO-Standard 1999] and C11 [ISO-Standard 2011]. Over time, C

compilers introduced extensions to the language and non-ISO dialects emerged. Besides, the ISO

standard does not specify a formal semantics for C. For that reason, alternative interpretations

of the language’s behaviour can been seen in different compilers. As a result, a survey conducted

by Memarian et al. [Memarian et al. 2016] concludes that the expectations of C programmers,

the assumptions made by static analysis tools, the behaviour of compilers, and the normative

description from the ISO standard, diverge among themselves in several aspects.

Given the aforementioned subtleties, how accurately can we verify programs reconstructed

by PsycheC? Our primary guidance is the ISO standard, but actual validation is done through

compilers. A C11 compiler that attempts to rigorously conform to the standard is kcc [Ellison

and Rosu 2012; Hathhorn et al. 2015; Inc. 2017]. It can diagnose issues that neither gcc, clang, nor

icc, even in strict/pedantic mode, might detect. On the other hand, gcc and clang, which are free

compilers, are more widely adopted in the industry. Therefore, while we test PsycheC with all

those compilers, we ultimately strive for compliance with gcc and clang.

PsycheC covers almost all C99 language constructs. At the point of this writing, we lack desig-

nated initializers for arrays, compound literals, static array indices, and complex numbers. Although

C11 brings significant features (e.g. memory model, multithreading, preprocessor-related and li-

brary additions), few of them relate to static semantics. So much of C11 is also understood. In its

current form, PsycheC addresses the fundamental typing relations of C that are necessary for type

inference. As shown in Section 5, we are capable of reconstructing the latest releases of many C

libraries and incomplete source from popular open-source projects. Limitations and cases with

special treatment are discussed in the following paragraphs.

Unexpanded Macros. The input of PsycheC is a translation unit [ISO-Standard 2011]{§5.1.1.1},

so the submitted incomplete source must have been preprocessed. One question arising from this

8
C89 was later ratified by ISO and referred to as C90 [ISO-Standard 1990]. We disregard C95, since it is an amendment.
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scenario is: how to handle macros whose definitions are unavailable? The ideal case is when a

macro, even in expanded form, conforms to C’s grammar. Object- and function-like macros usually

fit into this case, allowing successful parsing and a valid program reconstruction. For situations in

which syntax errors appear due to unexpanded macros, PsycheC offers an extension-point that

allows one to register predefined expansions - we observe that such macros frequently belong to

a project’s API, in which case this configuration can be done once and shared across developers.

Nevertheless, we highlight that, among thousands of lines evaluated in Section 5, less than ten

unique syntactically-invalid macros were found.

Example 4.1. In partial program P1 = [void g() { M_A(10); }], M_A is an unexpanded macro.

Since P1 is accepted by C’s grammar, PsycheC can parse it and infer M_A as a function. Partial

program P2 = [void f() { M_B(int, x) }], however, is invalid: we would be passing a type as an

argument. But if a predefined expansion for `M_B(T, V)’, such as `T V;’, is registered in advance,

PsycheC can reconstruct P2.

Declarations in C often appear surrounded by platform-specific decorators like a calling con-
ventions specification (e.g. _cdecl), GNU’s __attribute__ specifiers, or Microsoft’s __declspec im-

port/export directives. Those decorators do not influence the typing relations of a partial program

and are used by a compiler’s backend for object-code generation. However, decorators do render an

incomplete source invalid. PsycheC can handle them through empty builtin expansions configured

on a platform-specific basis. This is the same mechanism employed by IDE’s like Qt Creator to

enable parsing (and, consequently, semantic-oriented features) in code editors.

Decaying: arrays x pointers, functions x function pointers. Our constraint’s language does
not distinguish array access from pointer expressions

9
. Due to the decaying rule [ISO-Standard

2011]{§6.3.2.1.3}, this inability is not a limitation. Contexts in which this differentiation matters,

such as within the sizeof operator, affect dynamic semantics. Decaying from function to function

pointers [ISO-Standard 2011]{§6.3.2.1.4} is handled by an ad-hoc unification rule that allows con-

version between the two, combined with a late stage in our solving process that performs that

decaying.

A Glimpse of Dynamic Semantics. Despite a varying degree of language-completeness cov-

erage, there has been numerous studies on a formal dynamic semantics for C [Blazy and Leroy

2009; Ellison and Rosu 2012; Krebbers 2015; Krebbers and Wiedijk 2015; Papaspyrou 1998, 2001]

and that of C’s concurrency model [Batty et al. 2016; Nienhuis et al. 2016]. While the focus of our

work is on producing well-typed programs, well-typedness does not eliminate the risk of undefined
behaviours [Hathhorn et al. 2015]. PsycheC cannot guarantee, for a reconstructed program, that it

behaves well at runtime. We do not offer this guarantee even when an incomplete source originates

from a program free from undefined behaviours. Besides the fact that values may be absent, there

exist other reasons that prevent us from establishing stronger guarantees about dynamic semantics:

(i) inaccuracies on arithmetic types’ inference can lead to signed integer overflows; (ii) fields of

an inferred struct may be in different order from those in the original struct; (iii) missing array

declarations are always inferred as pointers, possibly leading to unbound memory accesses; (iv)

a function absent in the partial program has only its declaration inferred by PsycheC, not its
definition - as mentioned at the end of Section 1, stub-generation tools [Cadar et al. 2008; Godefroid

et al. 2005] can mitigate this problem. We notice that PsycheC’s program reconstruction is cast-free:

we do not introduce type casts in the program; hence, we do not change type relations already

9
Array declarations are distinguishable, but in certain cases it is necessary to analyse further syntax: A bracket-less

declaration like `T var;’ could hide an array if a typedef like `typedef int T[2];’ is missing.
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in place on the original code. In particular, we respect the contracts [Wadler and Findler 2009]

between types and subtypes that we create to handle qualifiers. Finally, we emphasize that our

results pertain to the static semantics of programs; hence, undefined behavior does not compromise

our ability to find types for missing declarations.

5 EMPIRICAL EVALUATION
The key contribution of this paper is the technique to infer valid semantics to incomplete C sources.

As we have seen in the previous sections, this endeavour implies no small amount of work, because

C is not designed, from its beginning, to be amenable to type inference. Given this observation,

why one would go over all the troubles to reconstruct missing declarations of C programs? The

answer to this question is another contribution of this paper. Thus, in the rest of this section, we

describe practical uses of a type inference engine for incomplete C code.

The use cases that we shall discuss are not an exhaustive list of the possibilities that our ideas

open up. PsycheC is a realistic, down-to-earth tool, with a community of users
10
. Since late 2016,

PsycheC has been available through an online interface, where users upload their source, and

get back a complete program. We know that this website has been used in different and, often,

unexpected ways: as a code completion helper and as an assistant that reconstructs programs

before they are forwarded to other tools.

5.1 Reconstructing Header Files
Goal: Show that we can reconstruct header files of real-world programs.

Motivation:When porting source code across platforms, it may happen that a software component

depends on infrastructure that is not available on the target platform. For instance, during embedded

software development, it can be the case that custom-hardware drivers cannot be compiled on

traditional architectures, where we would like to run simulation or analyses. This was the original

motivation for the development of PsycheC: to use Valgrind on software implemented for a

particular embedded platform. PsycheC was used to aid porting those programs to Linux.

Benchmark: The 11 first programs (lexicographic order) from the latest version, 8.27, of the GNU

Coreutils library - change owner appears twice because its implementation is split into two files.

All headers, macro definitions, and top-level declarations are entirely removed from the source
11
,

the hardest setup for PsycheC’s inference. Programs from GNU Coreutils are written in C99.

Discussion: Coreutils programs feature a rich set of C language constructs, an extensive variety

of types, and broad coding style. Table 1 shows the result of our evaluation. Because we use an

aggressive methodology to produce partial programs, the samples that we test have some of the

ambiguous syntax seen in Figure 5. The parsing technique of Section 3.1 disambiguates some

of them, as reported in column Alg. When further syntax is still not enough for us to resolve

ambiguities, we resort to heuristics, following the approach of Knappen et al [Knapen et al. 1999].

Thus, x(y) is disambiguated as a function call; and x*y is disambiguated as a pointer declaration,

for instance. Column Heu shows how often we resorted to heuristics. Our guesses turned out to

be 100% correct for the Coreutils programs. This accuracy can be explained by the fact that those

heuristics are based on common coding guidelines and constructs such as a multiplication with

a discarded result is rare. Nevertheless, the algorithmic disambiguation presented in Section 3.1

is relevant to allow a formal end-to-end approach of our type inference. Table 1 also shows that

constraint-solving time is proportional to the numbers of constraints, an expected result.

10
Earlier this year (2017), PsycheC appeared among GitHub’s most trending projects.

11
Invalid syntax due to unexpanded macros happened for the following macros: INT_BUFSIZE_BOUND, TYPE_SIGNED,

GETOPT_HELP_OPTION _DECL, GETOPT_VERSION_OPTION_DECL, IF_LINT, SET_COMPONENT and _GL_UNUSED.
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LoC Disamb Constr gcc clang kcc

Ori Par Alg Heu Sem Eq Sub Time W E W E W E

base64.c 349 259 1 6 0 1,043 43 0.853 5 0 4 0 0 0

basename.c 189 150 3 6 2 503 32 0.279 6 0 4 0 0 0

cat.c 767 695 3 4 5 1,983 132 3.569 5 0 5 0 0 0

chcon.c 586 504 6 7 8 1,326 83 1.530 5 0 5 0 1 0

chgrp.c 318 244 1 5 2 734 43 0.484 11 0 12 0 0 0

chmod.c 569 468 3 7 10 1,435 123 1.757 6 0 9 0 0 0

chown.c 330 259 1 5 0 811 43 0.547 4 0 11 0 0 0

chown-core.c 554 507 9 1 2 1,932 143 3.233 3 0 3 0 0 0

chroot.c 429 366 8 4 15 1,349 98 1.675 14 0 15 0 2 0

cksum.c 318 249 2 4 1 768 40 0.564 2 0 2 0 1 0

comm.c 457 359 1 6 0 1,930 76 2.773 5 0 5 0 0 0

Table 1. Reconstruction of the GNU Coreutils programs. LoC: lines of code in the Original program and in
the Partial one; Disamb: syntactical ambiguities resolved Algorithmically or Heuristically; and Semantic
ambiguities resolved through our lattice; Constr: constraints of type Equivalences and of Subtyping, along
with the Time (seconds) required to solve them; gcc/clang/kcc: number of Warnings and Errors.

Both gcc and clang compile, without errors or warnings, the original programs. However, the

original programs fail when compiled with kcc
12
because this compiler does not support the non-

standard #include_next extension - trying to compile, with kcc, source preprocessed by other

compiler does not work either, due to builtin expansions such as __builtin_va_list. On the other

hand, kcc successfully compiles all the programs reconstructed by PsycheC.
Given that kcc is stricter than gcc and clang, it may come as surprise why the later diagnoses

more warnings than the former. The reason for a large number of warnings by gcc and clang

is because those two compiler detect if PsycheC redeclares a function or type that is part of C’s

standard library. As a matter of fact, the imprecision mentioned in the previous paragraph can

render such redeclaration inconsistent with the one from the standard library. It is possible to run

PsycheC in a stdlib-compatible mode so that it matches standard library names and uses the official

declarations. But at this point, only part of the C’s standard library has been implemented and this

evaluation has been performed on the basis of “pure inference". Other sources of imprecisions of

PsycheC that might trigger warnings are the following ones:

• Signed x unsigned mismatch: PsycheC cannot not always differentiate between undeclared

signed and unsigned types; implicit conversions among them is permitted.

• Value is not an enumerator: upon switchs on enumerated types, gcc and clang might alert

that an identifier in a case is not an enumerator. Even though the information that a name is

an enumerator might not be inferable from syntax in this situation, PsycheC annotates the

expression and its parts with a constexpr constraint, matching to C’s constant-expression [ISO-
Standard 2011]{§6.6} rule - a #define with an arbitrary value is generated.

• Unused expression result: due to unexpanded object-like macros in an expression-statement.

5.2 Enabling Static Analyses
Goal: Give static analyses tools the means to handle programs partially available.

Motivation: Prominent static analysis tools, such as SonarQube, OClint, Splint [Evans 1996;
Larochelle et al. 2001], PVSStudio, clangStaticAnalyser, Checkmarx, Coverity, Klocwork and Frama-
C [Cuoq et al. 2012] require full source files. They usually integrate with the build system. Analyzing

cross-platform and embedded software can be arduous in this scenario. In fact, few of the afore-

mentioned tools offer versions for Windows, Linux, and OSX. The industry tries to mitigate this

12
Our kcc compilations have been performed through RV-Match, available at: https://runtimeverification.com/match/.
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a) int​ ​_PyState_AddModule(PyObject*​ ​module,​ ​struct​ ​PyModuleDef*​ ​def) ​ ​{ 
​ ​​ ​​ ​​ ​PyInterpreterState​ ​*state; 
​ ​​ ​​ ​​ ​if ​ ​(def->m_slots) ​ ​{ 
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​PyErr_SetString(PyExc_SystemError,​ ​"PyState..."); 
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​return ​ ​-1; 
​ ​​ ​​ ​​ ​} 
​ ​​ ​​ ​​ ​state​ ​=​ ​GET_INTERP_STATE(); 
​ ​​ ​​ ​​ ​if ​ ​(!def) ​ ​return ​ ​-1; 
​ ​​ ​​ ​​ ​//... 
} 

 struct​ ​PyModuleDef ​ ​{ ​ ​int​ ​m_slots;​ ​} ​ ​; 
typedef ​ ​int​ ​PyObject​ ​; 
typedef ​ ​int​ ​​ ​PyInterpreterState​ ​; 
int​ ​*​ ​GET_INTERP_STATE ​ ​() ​ ​; 
int​ ​PyErr_SetString​ ​(int​ ​,char*) ​ ​; 
int​ ​PyExc_SystemError; 
 
 

b) bit32​ ​siHDAMode_V() ​ ​{ 
​ ​​ ​​ ​if(saRoot->memoryAllocated.agMemory[i].totalLength ​ ​>​ ​biggest) ​ ​{ 
​ ​​ ​​ ​​ ​​ ​​ ​if(biggest​ ​<​ ​saRoot->memoryAllocated.agMemory[i].totalLength) ​ ​{ 
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​save​ ​=​ ​i; 
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​biggest​ ​=​ ​saRoot->memoryAllocated.agMemory[i].totalLength; 
​ ​​ ​​ ​​ ​​ ​​ ​} 
​ ​​ ​​ ​} 
} 

 typedef ​ ​struct​ ​TYPE_6__​ ​TYPE_3__; 
typedef ​ ​struct​ ​TYPE_5__​ ​TYPE_2__; 
typedef ​ ​struct​ ​TYPE_4__​ ​TYPE_1__; 
typedef ​ ​int​ ​bit32; 
struct​ ​TYPE_5__​ ​{ ​ ​TYPE_1__*​ ​agMemory;​ ​}; 
struct​ ​TYPE_6__​ ​{ ​ ​TYPE_2__​ ​memoryAllocated;​ ​}; 
struct​ ​TYPE_4__​ ​{ ​ ​int​ ​totalLength;​ ​}; 
int​ ​biggest,​ ​i,​ ​save; 
TYPE_3__*​ ​saRoot; 

c) type_p ​ ​find_structure​ ​(const​ ​char​ ​*name,​ ​enum​ ​typekind ​ ​kind) ​ ​{ 
​ ​​ ​​ ​​ ​structures ​ ​=​ ​s;​ ​​ ​// ​ ​assignment 
​ ​​ ​​ ​​ ​s->kind ​ ​=​ ​kind; 
​ ​​ ​​ ​​ ​s->u.s.tag​ ​=​ ​name; 
​ ​​ ​​ ​​ ​structures ​ ​=​ ​s;​ ​​ ​// ​ ​re-assignment 
​ ​​ ​​ ​​ ​return ​ ​s; 
} 

 /*​ ​Forward ​ ​declarations ​ ​omitted ​ ​due​ ​to ​ ​space​ ​*/ 
typedef ​ ​TYPE_3__*​ ​type_p; 
typedef ​ ​enum​ ​typekind ​ ​{  
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​____Placeholder_typekind ​ ​} ​ ​typekind; 
struct​ ​TYPE_7__​ ​{char​ ​const*​ ​tag;​ ​}; 
struct​ ​TYPE_8__​ ​{TYPE_1__​ ​s;​ ​}; 
struct​ ​TYPE_9__​ ​{int​ ​kind;​ ​TYPE_2__​ ​u;​ ​}; 
TYPE_3__*​ ​s,​ ​*​ ​structures; 

 

 Fig. 19. On the left, snippets from open-source projects. On the right, types inferred by PsycheC which
preserve the same issues diagnosed for the complete program by PVS-Studio. (a) CPython: An if condition
checks validity of the pointer def. However, this pointer is dereferenced in a previous if through access to field
def->m_slots, potentially causing a segmentation fault. (b) FreeBSD: Nested if conditions with semantically
equal expressions, only that the operator is inverted and the operands are at opposite sides. The conditions
are redundant. (c) gcc: Successive assignments of the structures variable. One of them is meaningless.

problem with component-packages and plugin-based services. However, it is difficult to provide

such support for every conceivable system. As consequence of these shortcomings, many static

analysis tools cannot handle partial programs: they skip source sections or break down, when

absent declarations are encountered. Either way, a diagnostic cannot be produced.

Benchmark: PVS-Studio13, a tool that detects bugs in C, C++ and C# programs, and that works for

Windows and Linux. The PVS-Studio website contains a vast suite of code snippets from popular

open-source projects. But in order to analyze them, PVS-Studio needs the entire program. We have

reconstructed many of those partial programs and submitted them to static analysis.

Discussion: Figure 19 shows the types that PsycheC reconstructs to three snippets taken, as-is,
from PVS-Studio’s show-case. Each of these examples illustrates a particular issue that PVS-Studio

finds automatically. The program we reconstruct is diagnosed with the same issues as the original
programs. In spite of that, a program reconstructed by PsycheC does not, necessarily, contain all

issues that would have been diagnosed for the original program. For instance, PsycheC might not

differentiate between a signed and an unsigned arithmetic type (due to an implicit conversion),

or, in the absence of a value that indexes an array, a buffer overrun may not be detectable. But in

13
Frontpage at https://www.viva64.com/en/pvs-studio/; show-case examples at https://www.viva64.com/en/inspections/
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many situations, the cause of a diagnostic lies on the structure of a program. In cases similar to the

snippets from Figure 19, PsycheC produces declarations that lead to the same diagnostics.

5.3 Improving Static Analyses
Goal: Eliminate false-positives from static analyses tools.

Motivation: Some static analyses tools employ a variation of fuzzy parsing [Koppler 1997] to deal

with partial programs. An appealing advantage of this approach is that it requires “zero setup”. Zero

setup offers opportunities for broader use-cases: a developer can analyze source regions within a

code editor, or individual functions extracted from a VCS (Version Control System), or code snippets

submitted to a bug-tracker. However, without the aid of a type inference such as the one we propose,

the zero setup scenario becomes less likely to be explored, since precision of the analysis degrades

and the number of false-positives increases.

Benchmark: Cppcheck14, a static analyzer for C and C++, which detects errors such as out-of-

bounds memory accesses, memory leaks and null pointer dereferences, for instance.

Discussion: Consider the hand-picked program P = [void f() { x b = 1; a ∗ b; ++b; }]. When

processing this program, Cppcheck produces at, ++b, a false-positive diagnostic due to the use

of “uninitialised variable b". This error happens because it cannot distinguish that a ∗ b must be a

multiplication, not a declaration. CppCheck could benefit from a tool like PsycheC by reconstructing

this program prior to the analysis, in which case the false-positive could be eliminated.

5.4 Supporting Software Testing
Goal: Enable, from isolated functions, the generation of stubs to test programs.

Motivation: A number of stub-generators, capable of fabricating meaningful test-input data,

have been proposed to support software testing. Examples include KLEE [Cadar et al. 2008],

PathCrawler [Williams et al. 2005],DART [Godefroid et al. 2005], and PEX [Tillmann and De Halleux

2008]. However, these tools do not address a practical aspect of testing complex systems: the ability

to decouple, at the source level, functions of interest from their dependencies. This possibility makes

testing more convenient and accessible. Thus, the aforementioned tools still require a complete

program, either to be statically-analyzed or symbolically-executed.

Benchmark: PathCrawler, a tool that automatically generates test inputs for functions written in

C. We use the version of PathCrawler available through an online interface
15

Discussion: The function displayed in Figure 20 has been submitted as a patch
16
to the git project.

The purpose of check_header_line is to enforce that no two operations such as adding, removing,

copying, or renaming a file can happen simultaneously when a user issues command git commit. It
does not scale to run tools such as PathCrawler on the entire program for every single commit. But

to quickly provide preliminary feedback to a developer, we wish to generate test-input data for

check_header_line and verify whether its implementation is correct.

PsycheC lets us solve this problem. From the isolated function, we infer types struct patch
and struct apply_state; hence, enabling the compilation of function check_header_line. We sub-

mitted the reconstructed program to PathCrawler, along with a context and an oracle definition.

PathCrawler could generate all test-input data we expected (sixteen cases, corresponding to the

combinations of flags is_delete, is_rename, is_new, and is_copy) and of emitting a successful verdict

for the function implementation. PsycheC can be used to help testing patches whenever a function

appears in its entirety, the reason for which we picked this example.

14
Available at http://cppcheck.sourceforge.net/ on July 2017

15
Available at http://pathcrawler-online.com:8080/ on July 2017.

16
Available at https://github.com/git/git/commit/d70e9c5c8c865626b6e69c2bf9fd0e368543617b
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static  int  check_header_line(struct  apply_state  *state,  struct  patch  *patch)  {  
      int  extensions  =  (patch-­>is_delete  ==  1)  +  (patch-­>is_new  ==  1)  +  
                                                                (patch-­>is_rename  ==  1)  +  (patch-­>is_copy  ==  1);  
      if  (extensions  >  1)  
              return  error(_("inconsistent  header  lines  %d  and  %d"),  
                                                            patch-­>extension_linenr,  state-­>linenr);  
      if  (extensions  &&  !patch-­>extension_linenr)  
              patch-­>extension_linenr  =  state-­>linenr;  
      return  0;  
}  

   struct  patch  {  
                            int  is_delete;  
                            int  is_new;  
                            int  is_rename;  
                            int  is_copy;  
                            char*  extension_linenr;  };  
struct  apply_state  {  
                            char*  linenr;  };  
  
  

  
  

  
Fig. 20. On the left, a function introduced as a patch to the git project. On the right, types inferred by
PsycheC which allowed PathCrawler to generate test-input data for a conclusive verdict of correctness.

5.5 Extracting Data-Structures
Goal: Extract complete definitions of data structures from real-world software libraries.

Motivation:Many libraries provide, today, essential data structures, such as lists, binary trees, and

hash tables. But relying on external libraries can be undesirable, due to dependency management

or due to the sheer size and complexity of the library. The issue becomes more exacerbated if only

a tiny portion of source code is to be reused. Under these circumstances, copying-and-pasting can

be a workaround. However, such a manual process is error-prone and requires significant effort to

navigate through the sources in order to hand-pick only the necessary parts of an implementation.

Benchmark: Functions that manipulate Abstract Data Types from the following industry-quality

open-source libraries: GNOME’s GLib [Project 2017a], the GNU Portability Library Gnulib [Founda-
tion 2017] and the Generic Data Structure Library (GDSL) [Authors 2017]. In addition, we considered
functions from Sedgewick’s book [Sedgewick 2002]

17
. We select as targets only functions that

comprise the API of a basic “insert" operation (e.g. inserting an item into a list, inserting an item

into a tree, etc) and consider the availability of data-structures in each library.

Discussion: We establish the following reconstruction criteria: by starting with a single function,

we continuously add more of them until we are able to reconstruct at least 60% of the original data

structure. It is in the nature of our technique that, the more we see of an incomplete source, the

more accurate becomes the inference. For this experiment, a few macros, which were expanded,

appear in the slice: function-like macros to conveniently access fields of complex structs. In this

experiment, PsycheC infers quite complex types. All programs we reconstruct compile successfully

on gcc and clang. Kcc compiles all, but one of them: Gnulib’s reconstructed hash table. When

compiling it, kcc terminates without issuing any message.

Table 2 gives us an idea of how much of a data structure PsycheC can reconstruct from just a

few functions – the exact number of them are indicated in column Slice size. The Exact matches

correspond to fields inferred as the same type as in the original library’s declaration. Others have

either been Converted (e.g. between int and long) or identified as Scalar, because the available
syntax was not enough to differentiate an integer from a pointer (e.g. a variable initialized with

0). Fields in the original library’s implementation that do not appear in the slice are marked as

Unavailable. An interesting observation about Table 2 is that inference from all implementations

result in at a least one Orphan or Partial type, a type which we can only partially infer. For instance,

a field inferred as a function pointer but whose return type is unknown. Another example is a

pointer, but with unknown underlying type. Orphans and partial types typically correspond to

17
The functions we shall use are available online in the following websites: https://www.cs.princeton.edu/~rs/Algs3.c1-4/

code.txt and https://www.cs.princeton.edu/~rs/Algs3.c5/code.txt
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Fields Inferrence Slice Compiler

ADT Used Unav E C S P O size gcc clang kcc

G
L
i
b

Doub. Link. List 3 0 2 0 0 0 1 1 ok ok ok

Queue 5 0 4 0 0 0 1 1 ok ok ok

AVL Tree 12 2 3 3 1 2 3 3 ok ok ok

Hash Table (open addr.) 8 5 2 0 2 4 0 1 ok ok ok

G
D
S
L

Doub. Link. List 6 0 4 0 1 1 0 2 ok ok ok

Queue 6 3 3 0 1 1 1 3 ok ok ok

BST Tree 9 1 4 0 1 3 1 5 ok ok ok

RB Tree 7 4 4 0 1 0 2 4 ok ok ok

Hash Table (chain.) 9 1 0 2 0 6 1 1 ok ok ok

G
n
u
l
i
b

Link. List 3 3 1 0 1 1 0 1 ok ok ok

AVL Tree 7 1 4 2 0 1 0 2 ok ok ok

RB Tree 7 1 1 0 1 1 0 2 ok ok ok

Hash Table 10 5 2 5 2 2 1 1 ok ok Unav

S
e
d
g
e
w
i
c
k

Sing. Link.List 2 0 1 0 0 0 1 2 ok ok ok

Priority Queue 4 1 3 0 0 0 1 1 ok ok ok

Splay Tree 4 0 3 0 0 0 1 4 ok ok ok

RB Tree 4 0 3 0 0 0 1 4 ok ok ok

Hash Table (chain.) 3 0 2 0 0 0 1 2 ok ok ok

Hash Table (open addr.) 1 0 0 0 0 1 0 1 ok ok ok

Graph (adj. matrix) 3 0 2 0 1 0 0 2 ok ok ok

Graph (adj. list) 5 0 4 0 1 0 0 3 ok ok ok

Table 2. Field reconstruction of ADTs from different implementations. Fields: fields Used and Unavailable
in the slice taken; Inferred: types inferred Exactly; implicitly Converted; as Scalars, when syntax does not
differentiating between a pointer or an integer; only Partially, such as a pointer which we do not know the
underlying type; and Orphans; Slice Size: number of API functions that compose the slice. The last columns
show the result of compiling our reconstructed programs with gcc, clang, and kcc.

the item being inserted, which, for extensibility purposes, is an opaque pointer (a pointer to an

unspecified type) or comes from a user-supplied function-pointer or typedef.
The implementation style of ADTs also vary across libraries. While some of them use a single

struct with all the fields, others split the ADT representation across two structs: typically, one
for the node representation and another with fields that support the provided operations. When

comparing the complexity of Sedgewick’s textbook implementations against the industrial ones,

the greatest difference appears with hash tables: for an open-addressing scheme, Sedgewick stores

the table in a simple array; the professional libraries employ more advanced techniques. Hash tables

are also the most challenging ADTs to reconstruct, among the ones we evaluated. They typically

involve a larger number of fields, more opaque data, and many user-supplied function to calculate

keys, define item equality, allocate notes, etc. In regards to the graph evaluation, we considered as

an “insert" operation both the API to insert vertices and to insert edges into the graph.

6 RELATEDWORK
The work that we have presented in this paper is built on contributions from a long string of

research in programming languages, which we highlight in this section. However, we emphasize

that, to the best of our knowledge, the compilation of incomplete C code, with all the challenges

that this task entails, was thus far an unsolved problem.

Parsing of incomplete sources. There exists a body of work about parsing C/C++ in face of

missing program parts [Bischofberger 1993; Knapen et al. 1999; Koppler 1997; Padioleau 2009].

The work of Knapen et al. [Knapen et al. 1999] relates closely to ours. They generate multiple

AST nodes, until they have enough syntactic information to decide which one is valid. However,

contrary to our work, neither Bischofberger et al. [Bischofberger 1993], Koppler et al. [Koppler
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1997], Knapen et al. [Knapen et al. 1999], nor Padioleau [Padioleau 2009] reconstruct C programs.

They parse programs to support static analyses, but the production of compilable code is not among

their objectives. Hence, they do not deal with type and array size inference. Furthermore, none

of these previous work formalize their notion of ambiguity resolution; thus, it is difficult to state

precisely how they differ from our approach at the operational level. Therefore, the formalization

of section 3.1 is a contribution of this work.

Type inference. Type inference is a staple feature in statically typed functional programming

languages. Our approach is implemented after the HM(X) algorithm by Pottier and Remy [Pottier

and Rémy 2005]: with separate stages for constraint generation and type inference properly. The

main difference between the type inference that we do, and the one performed in languages such as

ML, is the fact that we do not have the declaration of algebraic types to guide the inference process.

On the contrary, we are trying to reconstruct them. Noonan et al. [Noonan et al. 2016] provide

a type inference algorithm for machine code that relates to our work. Their tool, Retypd, works
in a two-phase approach: 1) a sound inference algorithm constructed over a type-system richer

and more powerful than the actual C type-system; 2) a heuristic-based translation mechanism

that converts types from such type-system to C source. Although similar to the techniques that

we introduce in Sections 3.2 and 3.4, Noonan et al.’s method does not solve the problem that we

address: Retypd starts with a complete binary, infers types to it, and reports possible C types that

could have existed in the original source. We start with an incomplete C source, and recover the

missing code, including type declarations. As explained in Section 3.3, we use a subtyping relation

to model C pointers. Handling subtyping through unification is challenging due to the asymmetry

of type equivalences. To this end, we were inspired by the biunification algorithm from Dolan et
al. [Dolan and Mycroft 2017]. In particular, with the notion of input and output types and how to

represent them in terms of inequalities. However, our technique is based on plain unification and

does not employ bisubstitutions, yielding a simpler algorithm.

Program synthesis. There exists an enormous body of literature related to the synthesis of

programs [Manna and Waldinger 1980]. The synthesis community relies on examples or high-level

specifications to generate algorithms. We also want to generate code; however, we do not want to

generate behavior. Thus, we reconstruct missing declarations, but not missing function bodies.

7 FINAL THOUGHTS
This paper provides a technique to support the compilation of incomplete C code. We showed how

to recover missing syntactic and semantic information from sources partially available. In this

process, we solved problems related to ambiguities that surface once declarations are missing and

we overcame difficulties with C’s typing rules, by extending a well-known type inference approach.

Our technique lets us infer the types of variables and reconstruct a partial program into a new,

complete one, that passes C’s type-checker. The tool developed to sustain our ideas, PsycheC, is
the first type inference engine for C. We have used PsycheC to illustrate the many possibilities

that our theory opens up for researchers and practitioners.

Future Work. We believe that a general methodology to infer types for partially available C

code opens up several avenues along which further research can be pursued. Currently we do not

associate size information with array types, they are made plain pointers like int*. Yet, current
state-of-the-art symbolic range analysis, à la Nazaré et al. [Nazaré et al. 2014] should let us associate
conservative size expressions with such type; hence, giving us int[42] or int[N+M]. Furthermore, it

might be possible to establish guarantees about the dynamic semantics of the partial program to be

reconstructed. Consider the case of signed integer overflows, for instance. When, and how, can

we determine the exact type of scalars that are used in signed arithmetic operations amenable to

overflows? These, among other stories, we hope to discuss in the future.
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A PROOFS OF LEMMAS AND THEOREMS
Lemma 3.2 The following properties are true about a valid program P produced by P(∅, ∅,T ,V ),

where ++ denotes list concatenation:

(1) T ∩V = ∅

(2) If P = P1 ++ a b;++ P2, then: (i) there exists x , such that (typedef x a; ) ∈ P1, and (ii) x ∈ T
(3) If P = P1 ++ a + b;++ P2, then: (i) there exists x , such that (x a; ) ∈ P1, (ii) there exists y,

such that (y b; ) ∈ P1, (iii) {x ,y} ⊆ T and (iv) {a,b} ⊆ V

Proof: Property 1 follows from the checks in production rules 3 and 4, e.g., x < V and

x < T . Property 2.ii follows from the check in production rule 7. Property 2.i is a corollary:
the only event that inserts elements into T is the combination of rules 3 and 6. The proofs

of properties 3.i-iv are similar. □

Theorem 3.7 Let Ppar be a partial program derived from Por i . If Pβ (∅, ∅,Tβ ,Vβ ) succeeds on Ppar ,

and P(∅, ∅,T ,V ) succeeds on Por i , then the following properties hold:

(1) If x ∈ Tβ , then x ∈ T
(2) If x ∈ Vβ , then x ∈ V

Proof: (Property 1) Inspecting Figure 7, we find that only production rules e and f can

insert names into Tβ . Production e corresponds to production 6 in Figure 6, and both have

the same effect. Production f corresponds to production 7, i.e., the parsing of [x y]. Rule 7
contains a check that requires x to be in T . Rule f contains an effect that inserts x into Tβ .

(Property 2) Rules c, d and f insert names in variables. If x ∈ Vβ due to rule d, then x is

the second operand of an addition. The check in rule 9 requires x ∈ V . If x ∈ Vβ due to

rule f, then rule x appears in a term such as [a x]. Hence, rules 4 and 7 will insert x into V .

Finally, if x ∈ Vβ due to rule c, then Ppar contains a term [a ∗ x]. This term can be parsed

in the original program by either rule 8 or 10. Both rules contains guards ensuring that x

is a variable. □

Corollary 3.8 Let Ppar be a partial program. If Pβ (∅, ∅,Tβ ,Vβ ) succeeds on Ppar , thenTβ ∩Vβ = ∅.

Proof: Follows from Lemma 3.7 plus Lemma 3.2, Property 1, which ensures that names

in the original program denote either types or variables. □

Lemma 3.10 Given an expression E in a µC program P , if M(E) is p (resp. n), then ⟨⟨ P ,M ⟩⟩d
generates constraints that bind E to a pointer (resp. a numeric) type.

Proof: First, we consider the case when M(E) = p. The only rule that produces p

in Figure 13 deals with (&E,L,M). The construct &E in P causes ⟨⟨&E : τ ,M ⟩⟩e to

produce a type variable of pointer type, i.e., α ′∗. The case when M(E) = p follows by

similar reasoning. The rules that yield n in Figure 13 deal with literals (ℓ), or the result of

arithmetic expressions, i.e., E + E and E ∗ E. Visual inspection in Figure 11 shows that in

all these cases numeric types, such as ρ(ℓ), will be produced. □

Theorem 3.14 For any constraint K , there exists ψ ,Θ and K ′
such that ⟨ψinit ; Θinit ; K ; ⊤⟩ {

⋆

⟨ψ ; Θ; K ′
;K≤⟩ and ⟨ψ ; Θ; K ′

; K≤⟩ is a solver final configuration.

Proof: Case analysis on the rules in Figure 16 reveal that all of them can only be applied

a finite number of times; thus, we have termination. To see that they lead to a final

configuration, we notice that all the rules either: (i) move type equivalences such as α ≡ τ

to the left side of the conjunction of constraints; or (ii) produce the unsatisfiable constraint

⊥; or (iii) replace field constraints, i.e., has(τ ,x : τ ′) with simpler type equivalences; or

(iv) discard type qualifiers, thus producing simpler type equivalences. This observation,

plus the fact that the solving process terminates, concludes our proof. □
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Theorem 3.15 For all ψ , Θ, K , K≤ , ψ
′
, Θ′

, K ′
, and K ′

≤ , if ⟨ψ ; Θ; K ,K≤⟩ { ⟨ψ ′
; Θ′

; K ′,K ′
≤⟩ then

K ≈ K ′
.

Proof: The proof follows by case analysis on each one of the solving rules. We go over a

few cases:

• ⟨ψ ; Θ; (∃α .K1)∧K2; K≤⟩ { ⟨ψ ; Θ; ∃α .(K1∧K2); K≤⟩, where α < fv(K2): Equivalence

follows from the fact that conjunction is associative, and that α < fv(K2).

• ⟨ψ ; Θ; typedef τ as τ ′; K≤⟩ { ⟨ψ ; Θ[τ 7→ τ ′]; ⊤; K≤⟩: According to the semantics in

Figure 10, ϕ;ψ ;Θ |= typedef τ as τ ′ holds if ϕ;ψ ;Θ [τ 7→ τ ′] |= ϕ(τ ) = ϕ(τ ′)

• ⟨ψ ; Θ; K ∧α ≡ τ ∧K ′⟩ { ⟨ψ ; Θ; α ≡ τ ∧K ∧K ′⟩: This case is true because conjunction

is a commutative and associative operation.

• “Any rule in stage (c): Inequalities Ordering that does not change K": this case is trivial,
as K = K ′

. □

Theorem 3.19 There is no flow of information between orphan and non-orphan variables.

Proof: This theorem is equivalent to showing that:

(1) orphans do not index memory accesses;

(2) there is no assignment between orphan and non-orphan variable; and

(3) orphans do not control conditional statements.

To define flow of information, Hunt and Sands have used a core language called

While [Hunt and Sands 2006]. In that formalism, items (2) and (3) were the only ways

for different variables to interfere, thus, passing information away. Case (1) needs also to

be accounted in our case, because an assignment such as v = ∗e determines the value of

v , given the state of e . Showing non-interference for item (1) follows directly from the

constraint generation rules in Figure 11, as the two rules that refer to syntax to index

memory in µCproduce constraints that hinder a variable from being an orphan. These

rules refer to the syntax E− >x and ∗E. Case (2) also can be proven by case analysis, as the

only rule for assignments in Figure 11 forces both the sides of the assignment to be bound

to type variables that shall be unified. If one of them is not an orphan, the other cannot be

either. Extending this reasoning to chains of unifications is trivial. Finally, case (3) requires

us to analyze the constraints generated for conditionals. For simplicity, we have omitted

control flow constructs, such as if-then-else and while from µC’s syntax. We shall

analyze the if-then-else case. The analysis of other control flow constructions follow

the same reasoning. Below, we show the constraint generation rule for if statements:

⟨⟨ if (E) S1 else S2; S ′,τ ,M ⟩⟩s = ⟨⟨E : int ⟩⟩e ∧ ⟨⟨ S1,τ ⟩⟩s ∧ ⟨⟨ S2,τ ⟩⟩s ∧ ⟨⟨ S ′,τ ,M ⟩⟩s

By inspection, the conditional expression E is always bound to int. It is possible that other
constraints shall cause this type to change, e.g., due to type coercion. Nevertheless, E

cannot be an orphan. Because E controls implicitly [Hunt and Sands 2006] all the variables

defined within S1 and S2, none of these variables can be controlled by an orphan expression

due to a conditional branch. Conditionals in other constructions are treated in the same

way. □

Theorem 3.20 Let Ppar = D : P be a valid µC program and K = ⟨⟨ Ppar ⟩⟩d its corresponding

constraint system. If K is satisfiable, then exists Γ and K ′
s.t. K ′ | Γ ⊢ Ppar holds and K ′

is the

solved form for K with all orphan variables instantiated.

Proof: The proof follows by induction on the height of the derivation tree of typing

relations. We proceed by case analysis.

• Rule Tl: this case is satisfiable in any typing environment Γ, and for any K .

• Rule TBop: we apply induction on E and E ′. By hypothesis, Γ(⊕) = τ1 → τ2 → τ . The
result follows from the definition of ⊕.
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• Rule Th: we apply induction on E. By hypothesis (on K), has(α ,x : τ ) is true. By
Theorem 3.15, and the semantics of constraints (Figure 10), we have that the struct

corresponding to E has a type τ ′, which has a field x of type τ .
• Rule TLVar: Theorem 3.15, and the semantics of constraints (Figure 10), tells us that

τ ≡ α . By induction, under Γ augmented with x : τ , we have that S ′ type checks. □

B MORE ON THE IMPLEMENTATION OF PSYCHEC
In Section 4 we described the implementation of PsycheC. This appendix provides further details
about it.

Storage-class specifiers. PsycheC never introduces storage-class-specifiers [ISO-Standard 2011]{§6.7.1}
into declarations, except for a typedef. They do not influence typing.

Composite Types. By default, field accesses are unified into an struct type. A declaration of an

union is produced by PsycheC only if such a variable appears in the partial program through an

elaborated-type-specifier (e.g. union U v;). Union types are a frequent cause of undefined behaviour

since they permit writing to one field, but reading from another.

Enumerations. C scoping rules allows for an enumerator to be used without any form of qualifi-

cation. Therefore, it is not possible for PsycheC to match an enumerator to a given enumeration,

unless its declaration is in the partial program. Like for unions, a declaration of an enumeration is

produced if a variable is declared through an elaborated-type-specifier (e.g. enum E e;). We use a

placeholder enumerator.

Constant-Expressions. WhenPsycheC encounters an name in a contextwhere a constant-expression
[ISO-Standard 2011]{§6.6} is required, such as in a case statement, a #define will be generated. Such
values are annotated with a constexpr constraint.
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