
A Domain Specific Language For Drum Beat Programming
André Rauber Du Bois1 , Rodrigo Ribeiro12

1PPGC - Universidade Federal de Pelotas, Pelotas - RS

2PPGCC - Universidade Federal de Ouro Preto, Ouro Preto - MG

dubois@inf.ufpel.edu.br, rodrigo@decsi.ufop.br

Abstract
This paper describes HDrum, a Domain Spe-

cific Language for writing drum patterns. Pro-
grams written in HDrum look similar to the grids,
available in sequencers and drum machines, used
to program drum beats, but as the language has
an inductive definition we can write abstrac-
tions to manipulate drum patterns. HDrum is
embedded in the Haskell functional program-
ming language, hence it is possible to implement
Haskell functions that manipulate patterns gen-
erating new patterns. The paper also presents a
case study using HDrum, an implementation of
The Clapping Music, a minimalistic music writ-
ten by Steve Reich in 1972. The HDrum lan-
guage is currently compiled into midi files.

1. Introduction

This paper presents the HDrum language, a
domain specific language for drum pattern pro-
gramming embedded in the Haskell functional
programming language. Simple drum pattern
programming in HDrum looks like an ASCII ver-
sion of of the grids for drum beat programming
in sequencers and drum machines. But the con-
structors used to describe patterns have a well
defined inductive semantics which leads to in-
teresting properties and allows the definition of
functions over patterns and multi-tracks. HDrum
provides two abstractions, patterns and tracks,
the first is used do describe a drum beat and the
second to associate an instrument to a pattern.
HDrum is an algebra that defines the sets of pat-
terns and tracks and also the functions that oper-
ate on these sets. Mainly HDrum provides opera-
tors for repetition, sequencing and parallel com-
position of patterns and tracks.

As the DSL is embedded in Haskell, it is
possible to use all the power of functional pro-

gramming in our benefit to define new abstrac-
tions over drum patterns. To understand the pa-
per the reader needs no previous knowledge of
Haskell, although some knowledge of functional
programming and recursive definitions would
help. We try to introduce the concepts and syn-
tax of Haskell needed to understand the paper as
we go along.

Although HDrum and its prototype imple-
mentation are only designed for drum beat pro-
gramming the abstractions provided by the lan-
guage can be applied for general music program-
ming as well.

The paper is organized as follows. First we
describe the main constructors for patterns (Sec-
tion 2.1) and tracks (Section 2.2) design and their
basic operations. Next, we examine the impor-
tant abstraction of track composition (Section
2.3). Section 2.4, provides a discussion on sim-
ple algebraic properties of the language, e.g., the
notion of equality, associativity, etc. The com-
pilation of HDrum into midi files is explained
in Section 3. A case study, the implementation
of the minimalistic music The Clapping Music,
is presented in Section 4. Finally, related work,
conclusions and future work are discussed.

2. HDrum: Drum patterns for Haskell

2.1. Simple Drum Patterns

HDrum is an algebra (i.e., a set and the re-
spective functions on this set) for drum pattern
programming. The set of all drum patterns can
be described inductively as an algebraic data type
in Haskell:

data DrumPattern = X | O |
DrumPattern :| DrumPattern

The word data creates a new data type, in
this case, DrumPattern. This definition says

that a drum pattern can be either a hit (X), a rest
(O), or a sequential composition of patterns using
the operator (:|), that takes as arguments two
drum patterns and returns a new drum pattern.

As an example, we can define two 4/4 drum
patterns, one with a hit in the 1st beat called
kick and another that hits in the 3rd called
snare.
kick :: DrumPattern
kick = X :| O :| O :| O

snare :: DrumPattern
snare = O :| O :| X :| O

The symbol (::) is used for type definition in
Haskell, and can be read as has type, e.g. kick has
type DrumPattern.

As DrumPattern is a recursive data type, it is
possible to write recursive Haskell functions that op-
erate on drum patterns. For example, usually a certain
pattern is repeated many times in a song, and a repeat
operator (.*) for patterns can be defined as follows:

(.*) :: Int -> DrumPattern
-> DrumPattern

1 .* p = p
n .* p = p :| (n-1) .* p

The repeat operator takes as arguments an integer
n and a drum pattern p, and returns a drum pattern
that is a composition of n times the pattern p. As
can be seen in the previous example, the composition
operator can combine drum patterns of any size and
shape, e.g.:

hihatVerse :: DrumPattern
hihatVerse = 8 .* (X :| O :| X :| O)

hihatChorus :: DrumPattern
hihatChorus = 4 .* (X :| X :| X :| X)

hihatSong :: DrumPattern
hihatSong = hihatVerse :|

hihatChorus :|
hihatVerse :|
hihatChorus

or simply:

hihatSong :: DrumPattern
hihatSong = 2 .* (hihatVerse :|

hihatChorus)

In order to make any sound, a drum pattern must
be associated to an instrument hence generating a
Track, as explained in the next section.

2.2. Tracks

A track is the HDrum abstraction that associates
an instrument to a pattern. The Track data type is
also defined as an algebraic type in Haskell:

data Track =
MakeTrack Instrument DrumPattern
| Track :|| Track

A simple track can be created with the
MakeTrack constructor, which associates an
Instrument to a DrumPattern. A Track can
also be the parallel composition of two tracks, which
can be obtained with the :|| operator. In the current
implementation of the language, the instruments
available are the different drum sounds of the midi
protocol [1]. Instruments is also defined as an
algebraic data type listing all possible instruments:

data Instrument = AcousticBassDrum
| BassDrum | SideStick
| AcousticSnare | HandClap
| (...)

Now, we can use the previously defined patterns
kick and snare to create tracks:

kickTrack :: Track
kickTrack = MakeTrack BassDrum kick

snareTrack :: Track
snareTrack =

MakeTrack AcousticSnare snare

and also multi-tracks:

rockMTrack :: Track
rockMTrack =
kickTrack :||
snareTrack :||
MakeTrack ClosedHiHat (X:|X:|X:|X)

2.3. Composing Tracks

The :|| operator allows the parallel composition
of Tracks, i.e., adding an extra track to a multi-track
song. But what if we want to compose tracks in se-
quence, e.g., we have different multi tracks for the
introduction, verse and chorus, and want to combine
them in sequence to form a complete song?

One problem that we need to deal with are the dif-
ferent sizes of patterns in a multi-track. The size of
a multi-track, is the size of its largest pattern. It is
important to notice that when composing tracks, we
assume that smaller patterns have rest beats at their

track1 =
MakeTrack BassDrum (X)
:|| MakeTrack AcousticSnare (O :| O :| X)
:|| MakeTrack ClosedHiHat (X :| X :| X :| X)

track2 = MakeTrack BassDrum (X :| O :| O :| O)
:|| MakeTrack AcousticSnare (O :| O :| X :| O)
:|| MakeTrack ClosedHiHat (X :| O :| X)
:|| MakeTrack Cowbell (X)

track1track2 =
MakeTrack BassDrum (X :| O :| O :| O :| X :| O :| O :| O)
:|| MakeTrack AcousticSnare (O :| O :| X :| O :| O :| O :| X :| O)
:|| MakeTrack ClosedHiHat (X :| X :| X :| X :| X :| O :| X)
:|| MakeTrack Cowbell (O :| O :| O :| O :| X)

track2track1 =
MakeTrack BassDrum (X :| O :| O :| O :| X)
:|| MakeTrack AcousticSnare (O :| O :| X :| O :| O :| O :| X :| O)
:|| MakeTrack ClosedHiHat (X :| O :| X :| O :| X :| X :| X :| X)
:|| MakeTrack Cowbell (X)

track1twice =
MakeTrack BassDrum (X :| O :| O :| O :| X)
:|| MakeTrack AcousticSnare (O :| O :| X :| O :| O :| O :| X)
:|| MakeTrack ClosedHiHat (X :| X :| X :| X :| X :| X :| X :| X)

track2twice =
MakeTrack BassDrum (X :| O :| O :| O :| X :| O :| O :| O)
:|| MakeTrack AcousticSnare (O :| O :| X :| O :| O :| O :| X :| O)
:|| MakeTrack ClosedHiHat (X :| O :| X :| O :| X :| O :| X)
:|| MakeTrack Cowbell (X :| O :| O :| O :| X)

Figure 1: Composing tracks

end, hence all patterns are assumed to have the size of
the largest pattern in a multi-track. We can define this
concepts formally with the following recursive func-
tions:

lengthDP :: DrumPattern -> Int
lengthDP O = 1
lengthDP X = 1
lengthDP (X:|p) = 1 + lengthDP p
lengthDP (O:|p) = 1 + lengthDP p
lengthDP (x:|y) = lengthDP x +

lengthDP y

lengthTrack :: Track -> Int
lengthTrack (MakeTrack _ dp) =
lengthDP dp

lengthTrack ((MakeTrack _ dp):||t) =
max (lengthDP dp) (lengthTrack t)

Where lengthDP recursively calculates the size
of a drum pattern, and lenghtTrack finds out the
size of the largest pattern in a track, i.e., the size of
the track.

HDrum provides two constructs for composing
tracks in sequence, a repetition operators |* and a se-
quecing operator |+. The repetition operator is simi-
lar to .* but operates on all patterns of a muti-track:

|* :: Int -> Track -> Track

It that takes an integer n and a multi-track t and
repeats all patterns in all tracks n times adding the
needed rest beats at the end of smaller tracks.

The semantics of composing two multi-tracks t1
and t2, i.e., t1 |+ t2 is as follows:

• First we add rest beats to the end of each
track in t1 that has matching instruments
with tracks in t2, so that all those tracks have
the same size as the largest pattern in t1

• Then, for all patterns p1 in t1 and p2 in t2
that have the same instrument i, we generate
a new track MakeTrack i (p1:|p2)

• Finally, we add a pattern of rests the size of
t1, to the beginning of all tracks in t2 that
were not composed with tracks in t1 in the
previous step

Hence the size of the composition of two tracks
t1 and t2 is sum of the size of the largest pattern
in t1 with the largest pattern in t2.

In Figure 1 it is possible to see two tracks with dif-
ferent sizes of patterns inside (track1 and track2)
and their compositions, track1track2 is the same
as track1 |+ track2 and track2track1
is the same as track2 |+ track1. The
track1twice track is equivalent to 2 |*
track1 and track2twice is equivalent to 2 |*
track2.

2.4. Algebraic Properties

In this section we discuss some algebraic prop-
erties of drum patterns and tracks. Data types
DrumPattern and Track provide a syntactic rep-
resentation of music data, which allows different
sound renderings. As an example, let v1,v2 and
v3 be any value of type DrumPattern. Then,
one should expect that v1 :| (v2 :| v3) will
have the same meaning as (v1 :| v2) :| v3,
i.e. sequential composition is an associative opera-
tion. From a semanticist point of view, such values
are different, since they represent distinct syntactic
entities, but they can have the same meaning using
an appropriate notion of equality.

We consider two DrumPatterns or Tracks
equal if they produce the same music. In order to
define such equality precisely, we will need an alge-
bra of drum music. Formally, an algebraic structure
〈S, op1, op2, ...opn−1〉 is a n-uple formed by a non-
empty carrier set S and operations over it. The alge-
braic structure of drum sounds is formed by a set D
of drum music values with a distinct value ε to denote
rest, functions to sequential and parallel composition,
⊕ and ‖ respectively, a function for translating hits of
a given instrument to its correspondent music value,
namely J KI : Instrument→ D and a equivalence
relation between D elements denoted as v ≡ v′, for
some v, v′ ∈ D. We assume that ‖ is commutative
and both⊕ and ‖ are associative operators, with iden-
tity ε0 for ⊕, εn for ‖, where tn denotes the parallel
composition of n copies of t. When n = 0, t0 denotes
a rest of duration 0. We let P denote the set of pairs
formed by a value of type Instrument and a value
of type DrumPattern.

Translation of patterns and tracks is easily defined
by recursion as follows as in Figure 2.

Using the semantics, we can define an equivalence
relation for HDrum values. Let v1 and v2 be two drum
patterns or tracks. We say that they are equivalent,
v1 ≈ v2, if and only if Jv1K ≡ Jv2K, where Jv1K
denotes the semantics for patterns or tracks, respec-
tively. Using this equivalence relation, we can check

J , KD : P → D
Ji,XKD = JiKI
Ji,OKD = ε
Ji, d1 : | d2KD = Ji, d1KD ⊕ Ji, d2KD

J KT : Track→ D
JMakeTrack i dKT = Ji,dKD
Jt1 : ||t2KT = Jt1KT ‖ Jt2KT

Figure 2: Semantics of HDrum.

that HDrum patterns enjoys some algebraic proper-
ties. We list some of them below:

• Associativity: sequential and parallel com-
position are associative: For all p1, p2 and
p3 of type DrumPattern, we have p1 :|
(p2 :| p3) ≈ (p1 :| p2) :| p3.
For all t1, t2 and t3 of type Track,
we have t1 :| (t2 :| t3) ≈ (t1 :|
t2) :| t3.

• Identity: O0 is the identity for sequential com-
position.

• Commutativity of parallel composition: for
all tracks t1 and t2, we have that t1 :||
t2 ≈ t2 :|| t1.

Such properties are easily proved by induction over
the structure of DrumPatterns and Tracks, using
the respective properties of ⊕ and ‖ operators.

3. Compiling HDrum into midi files
Midi is a standardized protocol to transmit real

time information for the playback of a piece of mu-
sic. The protocol defines a collection of messages
that can be used to play music and for communication
between Midi devices. Midi files contain the descrip-
tion of a piece of music, i.e., information such as what
notes are played, when they are played, for how long
and how loud. Specifically for the implementation
of HDrum the important messages are the NOTE ON
and NOTE OFF messages which tell when to start and
stop playing a sound. Basically, the HDRum compiler
traverses the data structure of patterns and tracks gen-
erating the appropriate NOTE ON and NOTE OFF
messages for the drum instruments specified at tracks.
We used Haskell’s Codec.Midi library to generate
the files. This library provides an algebraic data type

defining all midi messages and handles the generation
of binary files from a list of midi messages.

4. Case study: The clapping music
Minimalistic music is a type of art music, created

in the early sixties, that uses minimal musical mate-
rial. A famous piece created in this style is The Clap-
ping Music, written by Steve Reich in 1972. The song
was written to be performed by two people clapping
the pattern in Figure 3. After 8 bars, one of the play-
ers shifts the pattern one eight note to the right. The
player keeps shifting every eight bars until his pattern
meets again the pattern of the first player. A video of
Steve Reich himself playing the piece can be seen in
[2].

The interesting thing about this song is that shift-
ing bits is a very common operation in computer sci-
ence, so me can actually program the song in HDrum.

Figure 3: The clapping music

The initial pattern of the song, can be implemented
in HDrum as follows:

clappingPat :: DrumPattern
clappingPat = X :| X :| X :| O :|

X :| X :| O :| X :|
O :| X :| X :| O

We can shift a pattern using the following func-
tion:

shiftPat :: DrumPattern -> DrumPattern
shiftPat O = O
shiftPat X = X
shiftPat (O:|p) = p :| O
shiftPat (X:|p) = p :| X
shiftPat (p1:|p2) = (tailDP p1) :|

p2:|(headDP p1)

If the pattern to be shifted is just a simple hit or
rest, shiftPat does nothing. If the first element of
the pattern is a hit or rest, then we simply move them
to the end. If the composed pattern is formed by two
more complex patterns (p1 and p2), we remove the
first beat of p1 and add it to the end of the pattern
using headDP to get the first element of the pattern.

Now, it is possible to write a function that creates
a pattern by shifting the beats of an initial pattern:

shiftMany :: Int -> Int
-> DrumPattern
-> DrumPattern

shiftMany 1 t p = t .* (shiftPat p)
shiftMany n t p =

t .* shifted
:| shiftMany (n-1) t shifted

where shifted = shiftPat p

The shiftMany function takes two integers (n
and t) and a pattern p as arguments and returns a new
pattern that shifts p n times, and each shifted version
of p is repeated t times.

Now it is possible to implement the song. The first
pattern, the one that is not shifted, is just a repetition
of clappingPat. The second pattern, starts with
the basic pattern and then is shifted every eight bars.
It must shift 12 times in order to become the initial
pattern again. Hence we have:

fstPatCS :: DrumPattern
fstPatCS = 104 .* clappingPat

sndPatCS :: DrumPattern
sndPatCS = 8.* clappingPat

:| shiftMany 12 8 clappingPat

and the final clapping song becomes:

clappingSong :: Track
clappingSong =
MakeTrack HandClap fstPatCS
:|| MakeTrack HandClap sndPatCS

5. Related Works
There has been a lot of work on designing pro-

gramming languages for computer music. Due to lack
of space, we discuss here the ones that are closer to
HDrum. There are many DSLs for computer music
based on functional languages, e.g. [3, 4, 5, 6, 7].
These languages usually provide means for playing
notes and composing the sounds generated in se-
quence and in parallel. In these languages the pro-
grammer can write a sequence of notes and rests,
and these sequences can also be combined in par-
allel. In HDrum, instead of having different notes
in the same track, each track indicates when a sin-
gle note is played, i.e., It is the repetition pattern of
a single note, similar to what happens in grids of a
drum machine. Although the symbols used in HDrum

have semantic meaning, visually programs look like
an ASCII version of the grids for writing drum beats
available in modern sequencers. We believe that this
approach makes it easier for someone that is used with
sequencer tools to write simple tracks in HDrum with
little knowledge of functional programming. Further-
more, as patterns are no associated with notes, pat-
terns can be reused with different instruments when
needed.

6. Conclusions and Future Work
This paper has described the HDrum language for

drum beat programming and its abstractions. Al-
though HDrum was designed for percussion instru-
ments, the ideas presented here can be easily adapted
for general music programming. Our ultimate goal is
to design a full language for live music programming.
The current implementation of HDrum can be found
in [8].

References
[1] Midi Instruments.

https://www.midi.org/specifications/item/gm-
level-1-sound-set, May 2017.

[2] The Clapping Music.
https://www.youtube.com/watch?v=hH1j06bMH-
DQ&t=115s, May 2017.

[3] Alex McLean. Making programming languages
to dance to: Live coding with tidal. In FARM
2014. ACM, 2014.

[4] Paul Hudak, Tom Makucevich, Syam Gadde, and
Bo Whong. Haskore music notation: An algebra
of music. J. of Functional Programming, 6(3),
May 1996.

[5] H. Thielemann. Audio processing using haskell.
In DAFx’04, 2004.

[6] Paul Hudak and David Janin. Tiled polymorphic
temporal media. In FARM 2014. ACM, 2014.

[7] Paul Hudak. An algebraic theory of polymorphic
temporal media. In PADL, 2004.

[8] HDrum Language.
https://sites.google.com/site/hdrumlanguage/,
May 2017.

