
Certified Bit-Coded Regular Expression Parsing
Rodrigo Ribeiro

Universidade Federal de Ouro Preto

Ouro Preto, Minas Gerais — Brazil

rodrigo@decsi.ufop.br

André Du Bois

Universidade Federal de Pelotas

Pelotas, Rio Grande do Sul — Brazil

dubois@inf.ufpel.br

ABSTRACT
We describe the formalization of a regular expression (RE) parsing

algorithm that produces a bit representation of its parse tree in

the dependently typed language Agda. �e algorithm computes

bit-codes using Brzozowski derivatives and we prove that produced

codes are equivalent to parse trees ensuring soundness and com-

pleteness w.r.t an inductive RE semantics. We include the certi�ed

algorithm in a tool developed by us, named verigrep, for regular

expression based search in the style of the well known GNU grep.

Practical experiments conducted with this tool are reported.

KEYWORDS
Certi�ed algorithms, regular expressions, bit-codes, dependent

types

ACM Reference format:
Rodrigo Ribeiro and André Du Bois. 2017. Certi�ed Bit-Coded Regular

Expression Parsing. In Proceedings of SBLP 2017, Fortaleza, CE, Brazil, Sep-
tember 21–22, 2017, 8 pages.

DOI: 10.1145/3125374.3125381

1 INTRODUCTION
Parsing is one of the most studied problems in computer science. It

involves the process of checking if a string of symbols conforms

to a given set of rules. Usually, parsing is preceded by the speci-

�cation of rules in a formalism (e.g. a grammar) and, also, either

the construction of data that makes evident which rules have been

used to conclude that the string of symbols can be obtained from it

or, otherwise, an indication of an error that represents the fact that

the string of symbols cannot be generated.

In this work we are interested in the parsing problem for regular

languages (RLs) [16], i.e. languages that can be recognized by non-

deterministic �nite automata and equivalent formalisms. Regular

expressions (REs) are an algebraic and compact way of specifying

RLs that are extensively used in lexical analyser generators [18]

and string search utilities [14]. Since such tools are widely used

and parsing is pervasive in computing, there is a growing interest

on certi�ed parsing algorithms [7, 9, 10]. �is interest is motivated

by the recent development of dependently typed languages. Such

languages are powerful enough to express algorithmic properties

as types, that are automatically checked by a compiler.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

SBLP 2017, Fortaleza, CE, Brazil
© 2017 ACM. 978-1-4503-5389-2/17/09. . . $15.00

DOI: 10.1145/3125374.3125381

In a previous work by one the authors [19], we described the

formalization of an algorithm for parsing RE’s based on derivatives.

RE derivatives were introduced by Brzozowski [6] as an alternative

method to compute a �nite state machine that is equivalent to a

given RE and to perform RE-based parsing. Owens et. al [27] rein-

troduce this concept, since “derivatives have been lost in the sands

of time” until his work on functional encoding of RE derivatives

have renewed interest on its use for parsing [12, 23].

Nielsen et. al. [24] introduce algorithms to build a compact repre-

sentation of RE parse trees as a sequence of bits, without explicitly

constructing the parse tree �rst and describe algorithms that simu-

late a �nite state machine that output the required bit list. Sulzmann

et. al. [33] designed a RE derivative-based algorithm that incremen-

tally builds a list of bits instead of a tree as parsing result. In both

works no machine checked proof was provided and Sulzmann et. al.

informal proof “has some un�llable gaps”, as pointed by Ausaf et.

al. which proved that Sulzmann et. al. algorithm produces POSIX

parse trees in Isabelle/HOL [3]. In this work we are interested in

providing fully certi�ed correctness proofs of Sulzmann et. al. de-

rivative based parsing algorithm. �e certi�ed algorithm produces

a bit sequence equivalent to traditional parse trees and we use it

in a RE based search tool that has been developed by us, using the

dependently typed language Agda [26]. Unlike Ausaf et. al., we do

not provide mechanized proofs which ensure that our formalization

produces POSIX parse trees. We leave such proof for further work.

More speci�cally, our contributions are:

• A formalization of bit-codes for RE parse trees, as presented

in [24], and machine checkable proof of their properties.

• A formalization of bit-annotated regular expressions (BRE),

its semantics and its soundness and completeness theorems

w.r.t. standard RE semantics. We also relate produced bit

sequences and RE semantics proving how they are related

to each other.

• A formalization of Brzozowski derivatives for BRE and its

soundness and completeness theorem w.r.t to BRE seman-

tics.

• We build certi�ed decision procedures for matching pre-

�xes and substrings of BRE.

�e rest of this paper is organized as follows. Section 2 presents

a brief introduction to Agda. Section 3 describes the encoding

of REs, its parse trees and their representation as bit-codes. In

Section 3.2 we present BREs, its semantics and their relation with

REs. In Section 4 we formalize a variant of Brzozowski derivatives

for BREs, its properties and describe how to build a correct parsing

algorithm from them. Section 5 comments on the use of the certi�ed

algorithm to build a tool for RE-based search and presents some

experiments with this tool. Related work is discussed on Section 6.

Section 7 concludes.

SBLP 2017, September 21–22, 2017, Fortaleza, CE, Brazil Rodrigo Ribeiro and André Du Bois

All the source code in this article has been formalized in Agda

version 2.5.2 using Standard Library 0.13, but we do not present

every detail. Proofs of some properties result in functions with

a long pa�ern matching structure, that would distract the reader

from understanding the high-level structure of the formalization.

In such situations we give just proof sketches and point out where

all details can be found in the source code.

All source code produced, including the LATEX source of this

article, are avaliable on-line [29].

2 AN OVERVIEW OF AGDA
Agda is a dependently-typed functional programming language

based on Martin-Löf intuitionistic type theory [21]. Function types

and an in�nite hierarchy of types of types, Set l, where l is a

natural number, are built-in. Everything else is a user-de�ned type.

�e type Set, also known as Set0, is the type of all “small” types,

such as Bool, String and List Bool. �e type Set1 is the type of

Set and “others like it”, such as Set → Bool, String → Set, and

Set → Set. We have that Set l is an element of the type Set (l + 1),
for every l > 0. �is strati�cation of types is used to keep Agda

consistent as a logical theory [31].

An ordinary (non-dependent) function type is wri�en A → B
and a dependent one is wri�en (x : A) → B, where type B depends

on x, or ∀ (x : A) → B. Agda allows the de�nition of implicit
parameters, i.e. parameters whose values can be infered from the

context, by surrounding them in curly braces: ∀ {x : A } → B. To

avoid clu�er, we’ll omit implicit arguments from the source code

presentation. �e reader can safely assume that every free variable

in a type is an implicity parameter.

As an example of Agda code, consider the following data type of

length-indexed lists, also known as vectors.

data N : Set where
zero : N

suc : N → N

data Vec (A : Set) : N → Set where
[] : Vec A zero

:: : ∀ {n } → A → Vec A n → Vec A (suc n)

Constructor [] builds empty vectors. �e cons-operator (::)

inserts a new element in front of a vector of n elements (of type

Vec A n) and returns a value of type Vec A (suc n). �e Vec
datatype is an example of a dependent type, i.e. a type that uses a

value (that denotes its length). �e usefulness of dependent types

can be illustrated with the de�nition of a safe list head function:

head can be de�ned to accept only non-empty vectors, i.e. values

of type Vec A (suc n).

head : Vec A (suc n) → A
head (x :: xs) = x

In head’s de�nition, constructor [] is not used. �e Agda type-

checker can �gure out, from head’s parameter type, that argument

[] to head is not type-correct.

�anks to the propositions-as-types principle
1

we can interpret

types as logical formulas and terms as proofs. An example is the

representation of equality as the following Agda type:

1
Also known as Curry-Howard “isomorphism” [31].

data ≡ { l } {A : Set l } (x : A) : A → Set where
refl : x ≡ x

�is type is called propositional equality. It de�nes that there

is a unique evidence for equality, constructor refl (for re�exivity),

that asserts that the only value equal to x is itself. Given a type P ,

type Dec P is used to build proofs that P is a decidable proposition,

i.e. that either P or not P holds. �e decidable proposition type is

de�ned as:

data Dec (P : Set) : Set where
yes : P → Dec P
no : ¬ P → Dec P

Constructor yes stores a proof that property P holds and constructor

no an evidence that such proof is impossible. Some functions used

in our formalization use this type. �e type ¬ P is an abbreviation

for P → ⊥, where ⊥ is a data type with no constructors (i.e. a

data type for which it is not possible to construct a value, which

corresponds to a false proposition).

A useful data type in dependently typed languages is the so-

called dependent-product, or Σ-types, that generalizes cartesian

products. A possible de�nition of dependent products in Agda is as

follows:

data Σ {a b } (A : Set a) (B : A → Set b) : Set (a t b) where
, : (x : A) → B x → Σ A B

A value of type Σ A B corresponds to a pair formed by a value

x of type A and a value of type B x. Note that the second com-

ponent type depends on the value of the �rst component. Under

proposition-as-types interpretation, dependent products are equiva-

lent to existential quanti�cation, since values of dependent products

are formed by a value x : A, which can be understood as a witness

of existential quanti�cation, and a value B x, which represents

the proof that x holds for B. Agda standard library represents ex-

istential quanti�cation as a dependent product in which the �rst

component is an implicit parameter:

∃ : ∀ {a b } {A : Set a } → (A → Set b) → Set (a t b)
∃ = Σ

In some functions involving dependent products we use wilcards “ ”

to avoid the need to explicitly write their values or even completely

omit, since Agda type checker can infer them. Finally, we represent

projections on dependent products as π1 and π2 which recover the

�rst and second component of product types, repectively.

Dependently typed pa�ern matching is built by using the so-

called with construct, that allows for matching intermediate val-

ues [22]. If the matched value has a dependent type, then its result

can a�ect the form of other values. For example, consider the fol-

lowing code that de�nes a type for natural number parity. If the

natural number is even, it can be represented as the sum of two

equal natural numbers; if it is odd, it is equal to one plus the sum

of two equal values. Pa�ern matching on a value of Parity n allows

to discover if n = j + j or n = S (k + k), for some j and k in each

branch of with. Note that the value of n is specialized accordingly,

using information “learned” by the type-checker.

data Parity : N → Set where
Even : ∀ {n : N } → Parity (n + n)

Certified Bit-Coded Regular Expression Parsing SBLP 2017, September 21–22, 2017, Fortaleza, CE, Brazil

Odd : ∀ {n : N } → Parity (S (n + n))

parity : (n : N) → Parity n
parity = -- definition omitted

natToBin : N → List Bool
natToBin zero = []

natToBin k with (parity k)
natToBin (j + j) | Even = false :: natToBin j
natToBin (suc (j + j)) | Odd = true :: natToBin j

For further information about Agda, see [26, 32].

3 REGULAR EXPRESSIONS
3.1 Standard Regular Expressions
Regular expressions are de�ned with respect to a given alphabet.

Formally, the following context-free grammar de�nes RE syntax:

e ::= ∅ | ϵ | a | e e | e + e | e?

where a is any symbol from the underlying alphabet. In our Agda

formalization, we represent alphabet symbols using type Char.
Datatype Regex encodes RE syntax.

data Regex : Set where
∅ : Regex
ϵ : Regex
$: Char → Regex
• : Regex → Regex → Regex
+ : Regex → Regex → Regex
? : Regex → Regex

Constructors ∅ and ϵ denote respectively the empty language (∅)

and the empty string (ϵ). Alphabet symbols are constructed by

using the $ constructor. Bigger REs are built using concatenation

(•), union (+) and Kleene star (?).

�e following datatype de�nes RE semantics inductively.

data ∈ J K : List Char → Regex → Set where
ϵ : [] ∈ J ϵ K
$: (c : Char) → [c] ∈ J $ c K
• : xs ∈ J l K → ys ∈ J r K → (xs ++ ys) ∈ J l • r K
+ L : (r : Regex) → xs ∈ J l K → xs ∈ J l + r K
+ R : (l : Regex) → xs ∈ J r K → xs ∈ J l + r K
? : xs ∈ J ϵ + (e • e ?) K → xs ∈ J e ? K

Constructor ϵ states that the empty string (denoted by the empty

list []) is in the language of RE ϵ .

For any single character a, the singleton string [a] is in the

RL for $ a. Given membership proofs for REs l and r , xs ∈ J l K
and ys ∈ J r K, constructor • can be used to build a proof for

the concatenation of these REs. Constructor + L (+ R) creates

a membership proof for l + r from a proof from l (r). Semantics

for Kleene star is built using the following well known equivalence

of REs: e? = ϵ + e e?. Notice that we use the same constructor

names both in RE syntax and in its semantics. Agda also allows

overloading of data-constructors names.

Several inversion lemmas about RE parsing relation are necessary

for derivative-based parsing formalization. �ey consist of pa�ern-

matching on proofs of ∈ J K and are omi�ed for brevity.

One way to look at RE parsing is to intepret parse trees as terms

whose type is a RE [13, 24]. To ensure the consistency between a

tree and its RE type, we use an indexed data-type, an usual approach

in dependently typed languages [26].

data Tree : Regex → Set where
ϵ : Tree ϵ

$: (c : Char) → Tree ($ c)
inl : ∀ (r : Regex) (tl : Tree l) → Tree (l + r)
inr : ∀ (l : Regex) (tr : Tree r) → Tree (l + r)
• : ∀ (tl : Tree l) (tr : Tree r) → Tree (l • r)

star[] : Tree (l ?)
star− :: : Tree l → Tree (l ?) → Tree (l ?)

Each constructor of Tree speci�es how to build a parse tree for a

RE. As an example, value inl ϵ (($ ’a’) • ($ ’b’) denotes a parse

tree for RE ab + ϵ .

�e relation between RE semantics and its parse trees are for-

malized by functions flat and unflat. �e flat function builds a

membership proof from a given parse tree by recursion on its struc-

ture. At each step, flat returns a pair formed by a string and its RE

membership proof. Matched strings can be recovered from parse

trees by concatenating values in their leaves (that would be the

empty string or a single character).

flat : Tree e → ∃ (λ xs → xs ∈ J e K)
flat ϵ = [] , ϵ

flat ($ c) = [c] , ($ c)
flat (inl r t) with flat t
...| xs , prf = , r +L prf
flat (inr l t) with flat t
...| xs , prf = , l +R prf
flat (t • t ′) with flat t | flat t ′

...| xs , prf | ys , prf ′ = , (prf • prf ′)
flat star[] = [] , (+L ϵ) ?

flat (star− :: t t ′) with flat t | flat t ′

...| xs , prf | ys , prf ′ = , (+R (prf • prf ′)) ?

Note that our de�nition of flat ensures, by construction, that the

string produced by a parse tree is in its RE language. Such property

is stated in Nielsen et. al. paper as a theorem (cf. �eorem 2.1 [24]).

Function unflat builds parse trees from RE membership proofs

straightforwardly:

unflat : xs ∈ J e K → Tree e
unflat ϵ = ϵ

unflat ($ c) = $ c
unflat (prf • prf ′) = unflat prf • unflat prf ′

unflat (r +L prf) = inl r (unflat prf)
unflat (l +R prf) = inr l (unflat prf)
unflat ((+L ϵ) ?) = star[]
unflat ((+R (prf • prf ′)) ?) = star− :: (unflat prf) (unflat prf ′)

�e next lemmas state that functions flat and unflat are inverses

and they are proved by induction on t and xs ∈ J e K, respectively.

Lemma 1. Let e be a RE and t : Tree e a parse tree. �en
unflat (π2 (flat t)) ≡ t.

SBLP 2017, September 21–22, 2017, Fortaleza, CE, Brazil Rodrigo Ribeiro and André Du Bois

Lemma 2. Let xs be a string and e a RE s.t. xs ∈ J e K. �en
flat (unflat prf) ≡ (xs , prf).

3.2 Bit-codes for RE Parse Trees
We follow the encoding of Nielsen et. al. [24] that uses bit marks

to register which branch was chosen in a parse tree for a union

operator, +, and the beginning and end of matches that correspond

to a Kleene star. Note that no marking is needed for concatenation

and single character since coding and decoding of bit sequences

are directed by the underlining RE.

We represent bit sequences using lists whose elements are of

type Bit.

data Bit : Set where
0b 1b : Bit

Not every bit list corresponds to a valid parse tree. Data type

IsCode represents an inductive predicate that holds when a bit list

bs denotes a valid parse tree for some RE e.

data IsCode : List Bit → Regex → Set where
ϵ : [] IsCode ϵ

$: (c : Char) → [] IsCode ($ c)
inl : xs IsCode l → (0b :: xs) IsCode (l + r)
inr : xs IsCode r → (1b :: xs) IsCode (l + r)
• : xs IsCode l → ys IsCode r → (xs ++ ys) IsCode (l • r)

star[] : [1b] IsCode (l ?)
star− :: : xs IsCode l → xss IsCode (l ?) →

(0b :: xs ++ xss) IsCode (l ?)

�e empty string and single character RE are both represented by

empty bit lists. Codes for RE l • r are built by concatenating codes

of l and r . In RE union operator, +, the bit 0b marks that the parse

tree for l + r is built from l’s and bit 1b that it is built from r’s. For

the Kleene star, we use bit 1b to denote the parse tree for the empty

string and bit 0b to begin matchings of l in a parse tree for l ?.

Function code builds a bit representation for a parse tree to-

gether with a proof that the produced bit string is a valid tree

representation.

code : Tree e → ∃ (λ bs → bs IsCode e)
code ϵ = [] , ϵ

code ($ c) = [] , ($ c)
code (inl r t) with code t
...| ys , pr = 0b :: ys , inl r pr
code (inr l t) with code t
...| ys , pr = 1b :: ys , inr l pr
code (t • t ′) with code t | code t ′

...| xs , pr | ys , pr ′ = xs ++ ys , pr • pr ′

code star[] = 1b :: [] , star[]
code (star− :: t ts) with code t | code ts
...| xs , pr | xss , prs = (0b :: xs ++ xss) , star− :: pr prs

Next we present function decode which generates a parse tree from

its correspondent bit code.

decode : ∃ (λ bs → bs IsCode e) → Tree e
decode (, ϵ) = ϵ

decode (, ($ c)) = $ c

decode (, (inl r pr)) = inl r (decode (, pr))
decode (, (inr l pr)) = inr l (decode (, pr))
decode (, (pr • pr ′)) with decode (, pr) | decode (, pr ′)
...| bs1 , pr1 | bs2 , pr2 = pr1 • pr2
decode star[] = (+L ϵ) ?

decode (star− :: pr pr ′) with decode (, pr) | decode (, pr ′)
...| pr1 | pr2 = (+R (pr1 • pr2)) ?

As one might expect, decoding a bit sequence produced by the

code function will produce the original parse tree.

Theorem 1. Let t : Tree e for some RE e. �en, it holds that
decode (code t) ≡ t.

Building bit codes from parse trees does not present any advan-

tage, since a�er building parse trees we will need to traverse them in

order to generate codes. A be�er strategy is to incrementally build

bit-codes while parsing a given RE. In next sections, we describe

the formalization of this approach, due to Sulzmann et. al. [33].

3.3 Bit-annotated Regular Expressions
Intuitively, BRE just a�ach a list of bits bs to every non-empty

regular expression. Type BitRegex de�nes the syntax of BRE, which

just associates a list of bits to a BRE.

data BitRegex : Set where
empty : BitRegex
eps : List Bit → BitRegex
char : List Bit → (c : Char) → BitRegex
choice : List Bit → BitRegex → BitRegex → BitRegex
cat : List Bit → BitRegex → BitRegex → BitRegex
star : List Bit → BitRegex → BitRegex

Conversion between Regex and BitRegex types is done by functions

internalize and erase. First, we de�ne an auxiliary function, fuse,

which a�achs a bit code to the top-most position of a BRE.

fuse : List Bit → BitRegex → BitRegex
fuse bs empty = empty
fuse bs (eps x) = eps (bs ++ x)
fuse bs (char x c) = char (bs ++ x) c
fuse bs (choice x e e′) = choice (bs ++ x) e e′

fuse bs (cat x e e′) = cat (bs ++ x) e e′

fuse bs (star x e) = star (bs ++ x) e

Function internalize converts a standard RE into BRE by inserting

empty bit lists on it.

internalize : Regex → BitRegex
internalize ∅ = empty
internalize ϵ = eps []

internalize ($ x) = char [] x
internalize (e • e′) = cat [] (internalize e) (internalize e′)
internalize (e + e′)
= choice [] (fuse [0b] (internalize e))
(fuse [1b] (internalize e′))

internalize (e ?) = star [] (internalize e)

Function erase is straightforwardly de�ned by recursion.

Certified Bit-Coded Regular Expression Parsing SBLP 2017, September 21–22, 2017, Fortaleza, CE, Brazil

erase : BitRegex → Regex
erase empty = ∅
erase (eps x) = ϵ

erase (char x c) = $ c
erase (choice x e e′) = erase e + (erase e′)
erase (cat x e e′) = erase e • (erase e′)
erase (star x e) = (erase e) ?

�e relation between these functions is expressed by the following

lemmas, which are proved by induction on the structure of e.

Lemma 3. For all e and bs, erase (fuse bs (internalize e)) ≡ e.

Lemma 4. Let e : Regex. �en, erase (internalize e) ≡ e

Next, we de�ne an alternative inductive semantics for BRE and

show that it is sound and complete w.r.t. standard RE semantics.

A value of type xs ∈ 〈 e 〉 states that string xs is in the language

denoted by BitRegex e.

data ∈ 〈 〉 : List Char → BitRegex → Set where
eps : (bs : List Bit) → [] ∈ 〈 eps bs 〉
char : (bs : List Bit) (c : Char) → [c] ∈ 〈 char bs c 〉
inl : (r : BitRegex) bs → xs ∈ 〈 l 〉 → xs ∈ 〈 choice bs l r 〉
inr : (l : BitRegex) bs → xs ∈ 〈 r 〉 → xs ∈ 〈 choice bs l r 〉
cat : (bs : List Bit) → xs ∈ 〈 l 〉 → ys ∈ 〈 r 〉 →

(xs ++ ys) ∈ 〈 cat bs l r 〉
star[] : (bs : List Bit) → [] ∈ 〈 star bs l 〉
star− :: : bs → (x :: xs) ∈ 〈 l 〉 → xss ∈ 〈 star [] l 〉 →

(x :: xs ++ xss) ∈ 〈 star bs l 〉

�e relation between BitRegex and Regex semantic is speci�ed by

the following theorem, proved by induction on the derivation of

xs ∈ J e K.

Theorem 2. Let e : Regex and xs : List Char. �en, xs ∈ J e K,
if and only if, xs ∈ 〈 internalize e 〉.

4 DERIVATIVES AND PARSING
Formally, the derivative of a formal language L ⊆ Σ? with respect

to a symbol a ∈ Σ is the language formed by su�xes of L words

without the pre�x a.

An algorithm for computing the derivative of a language repre-

sented by a RE as another RE is due to Brzozowski [6]. It relies on

a function (called ν) that determines if some RE accepts or not the

empty string (by returning ϵ or ∅, respectively):

ν (∅) = ∅

ν (ϵ) = ϵ
ν (a) = ∅

ν (e e ′) =

{
ϵ if ν (e) = ν (e ′) = ϵ
∅ otherwise

ν (e + e ′) =

{
ϵ if ν (e) = ϵ or ν (e ′) = ϵ
∅ otherwise

ν (e?) = ϵ

Decidability of ν (e) is proved by function ν[e], which is de�ned

by induction over the structure of the input BRE e and returns a

proof that the empty string is accepted or not, using Agda type of

decidable propositions, Dec P .

ν[] : ∀ (e : BitRegex) → Dec ([] ∈ 〈 e 〉)
ν[empty] = no (λ ())

ν[eps bs] = yes eps
ν[char bs x] = no (λ ())

ν[cat bs e e′] with ν[e] | ν[e′]

ν[cat bs e e′] | yes pr | (yes pr1)
= yes (cat bs pr pr1)

ν[cat bs e e′] | yes pr | (no ¬pr1)
= no (¬pr1 ◦ π2 ◦ [] ∈ • − invert)

ν[cat bs e e′] | no ¬pr | pr1
= no (¬pr ◦ π1 ◦ [] ∈ • − invert)

ν[choice bs e e′] with ν[e] | ν[e′]

ν[choice bs e e′] | yes pr | pr1 = yes (e′ +L pr)
ν[choice bs e e′] | no ¬pr | (yes pr1) = yes (e +R pr1)
ν[choice bs e e′] | no ¬pr | (no ¬pr1)
= no ([¬pr , ¬pr1] ◦ ∈ + − invert)

ν[star bs e] = yes star[]

Function ν[e] is an immediate translation of ν (e), as de�ned

by Brzozowski, to Agda code and it uses several inversion lemmas

about BRE semantics. Lemma [] ∈ • − invert states that if the empty

string is in the language of cat bs l r (where l and r are arbitrary

BRE’s) then the empty string belongs to l and r’s languages. Lemma

∈ + − invert is de�ned similarly for choice.

4.1 Derivatives for Bit-annotated REs and its
Properties

Following Sulzmann [33], we de�ne a function mkEps that builds

the bit code for a nullable BRE, (i.e. a BRE s.t. [] ∈ 〈 e 〉).

mkEps : [] ∈ 〈 t 〉 → List Bit
mkEps (eps bs) = bs
mkEps (inl br bs pr) = bs ++ mkEps pr
mkEps (inr bl bs pr) = bs ++ mkEps pr
mkEps (cat bs pr pr ′) = bs ++ mkEps pr ++ mkEps pr ′

mkEps (star[] bs) = bs ++ [1b]

mkEps (star− :: bs pr pr ′ x) = bs ++ [1b]

Next we de�ne the derivative operation on BREs in Agda. �e

di�erence betwen this de�nition and standard Brzozowski deriva-

tives [6] is that the former inserts parse tree information in terms

of bit annotations. For example, consider cat bs l r where [] ∈ 〈 l 〉,
additional parse information is built from a nullability test result

using functions mkEps and fuse. For the Kleene star operation we

record the start of a new iteration fusing [0b] and we mark a start

of a new matching iteration by a�aching the empty list in star [] e.

∂[,] : BitRegex → Char → BitRegex
∂[empty , c] = empty
∂[eps bs , c] = eps bs

∂[char bs c , c′] with c ?

= c′

...| yes refl = eps bs

...| no prf = empty
∂[cat bs e e′ , c] with ν[e]

∂[cat bs e e′ , c] | yes pr
= choice bs (cat bs ∂[e , c] e′) (fuse (mkEps pr) ∂[e′ , c])

SBLP 2017, September 21–22, 2017, Fortaleza, CE, Brazil Rodrigo Ribeiro and André Du Bois

∂[cat bs e e′ , c] | no ¬pr = cat bs ∂[e , c] e′

∂[choice bs e e′ , c] = choice bs (∂[e , c]) (∂[e′ , c])

∂[star bs e , c]

= cat bs (fuse [0b] ∂[e , c]) (star [] e)

From this de�nition we prove the following important properties

of the derivative operation: soundness of ∂[,] ensures that if a

string xs is in the language of ∂[e , x], then (x :: xs) ∈ 〈 e 〉 holds.

Completeness ensures that the other direction of the implication

holds. Both are proved by induction on the structure of e.

Theorem 3 (Derivative operation soundness). For all BREs
e, all strings xs and all symbols x, if xs ∈ 〈 ∂[e , x] 〉 holds then
(x :: xs) ∈ 〈 e 〉 holds.

Theorem 4 (Derivative operation completeness). For all
BREs e, all strings xs and all symbols x, if (x :: xs) ∈ 〈 e 〉 holds
then xs ∈ 〈 ∂[e , x] 〉 holds.

4.2 Parsing
RE parsing involves determining which pre�xes and substrings of

the input string match a given RE. For this, we de�ne datatypes that

represent the fact that a given BRE matches a pre�x or a substring

of a given string.

We say that BRE e matches a pre�x of string xs if there exist

strings ys and zs such that xs ≡ ys ++ zs and ys ∈ 〈 e 〉. De�ni-

tion of IsPrefix datatype encode this concept. Datatype IsSubstr
speci�es when a BRE e matches a substring in xs: there must exist

strings ys, zs and ws such that xs ≡ ys ++ zs ++ ws and zs ∈ 〈 e 〉
hold.

data IsPrefix (xs : List Char) (e : BitRegex) : Set where
Prefix : xs ≡ ys ++ zs → ys ∈ 〈 e 〉 → IsPrefix xs e

data IsSubstr (xs : List Char) (e : BitRegex) : Set where
Substr : xs ≡ ys ++ zs ++ ws → zs ∈ 〈 e 〉 → IsSubstr xs e

Using these datatypes we can de�ne the following relevant proper-

ties of pre�xes and substrings that are used to �ll proof obligations

present in decidability tests. All these lemmas are direct conse-

quences of pre�x and substring de�nitions.

Lemma 5 (Lemma ¬IsPrefix). For all BREs e, if [] ∈ 〈 e 〉 does not
hold then neither does IsPrefix [] e.

Lemma 6 (Lemma ¬IsPrefix− ::). For all BREs e and all strings xs,
if [] ∈ 〈 e 〉 and IsPrefix xs ∂[e , x] do not hold then neither does
IsPrefix (x :: xs) e.

Lemma 7 (Lemma ¬IsSubstring). For all BREs e, if IsPrefix [] e
does not hold then neither does IsSubstr [] e.

Lemma 8 (Lemma ¬IsSubstring− ::). For all strings xs, all symbols
x and all BREs e, if IsPrefix (x :: xs) e and IsSubstr xs e do not hold
then neither does IsSubstr (x :: xs) e.

Function IsPrefixDec decides if a given BRE e matches a pre�x in

xs by induction on the structure of xs, using Lemmas 5, 6, decidable

emptyness test ν[] and �eorem 3. Intuitively, IsPrefixDec �rst

checks if current RE e accepts the empty string. In this case, []

is returned as a pre�x. Otherwise, it veri�es, for each symbol x,

whether BRE ∂[e , x] matches a pre�x of the input string. If

this is the case, a pre�x including x is built from a recursive call to

IsPrefixDec or if no pre�x is matched a proof of such impossibility

is constructed using lemma ¬IsPrefix− ::.

IsPrefixDec : ∀ xs e → Dec (IsPrefix xs e)
IsPrefixDec [] e with ν[e]

IsPrefixDec [] e | yes p = yes (Prefix [] [] refl p)
IsPrefixDec [] e | no ¬p = no (¬IsPrefix ¬p)
IsPrefixDec (x :: xs) e with ν[e]

IsPrefixDec (x :: xs) e | yes p = yes (Prefix [] (x :: xs) refl p)
IsPrefixDec (x :: xs) e | no ¬p with IsPrefixDec xs (∂[e , x])

IsPrefixDec (x :: xs) e | no ¬p | (yes (Prefix ys zs eq wit))
= yes (Prefix (x :: ys) zs (cong (:: x) eq) (∂ − sound wit))

IsPrefixDec (x :: xs) e | no ¬pn | (no ¬p)
= no (¬IsPrefix− :: ¬pn ¬p)

Function IsSubstrDec is also de�ned by induction on the struc-

ture of the input string e, using IsPrefixDec to check whether it

is possible to match a pre�x of e. In this case, a substring is built

from this pre�x. If there’s no such pre�x, a recursive call is made

to check if there is a substring match, returning such substring or

a proof that it does not exist.

IsSubstrDec : ∀ xs e → Dec (IsSubstr xs e)
IsSubstrDec [] e with ν[e]

IsSubstrDec [] e | yes p = yes (Substr [] [] [] refl p)
IsSubstrDec [] e | no ¬p = no (¬IsSubstring (¬IsPrefix ¬p))
IsSubstrDec (x :: xs) e with IsPrefixDec (x :: xs) e
IsSubstrDec (x :: xs) e | yes (Prefix ys zs eq wit)
= yes (Substr [] ys zs eq wit)

IsSubstrDec (x :: xs) e | no ¬p with IsSubstrDec xs e
IsSubstrDec (x :: xs) e | no ¬p | (yes (Substr ys zs ws eq wit))
= yes (Substr (x :: ys) zs ws (cong (:: x) eq) wit)

IsSubstrDec (x :: xs) e | no ¬p1 | (no ¬p)
= no (¬IsSubstring− :: ¬p1 ¬p)

5 IMPLEMENTATION DETAILS AND
EXPERIMENTS

We include the formalized algorithm in a tool for RE parsing de-

veloped by us, named verigrep, in the style of GNU Grep [14]. We

have built a simple parser combinator library for parsing RE syntax,

using the Agda Standard Library and its support for calling Haskell

functions through its foreign function interface.

Experimentation with our tool involved a comparison of its per-

formance with GNU Grep [14] (grep), Google regular expression

library re2 [28] and Haskell RE parsing algorithms haskell-regexp,

described in [12]. �e experiments consider three distinct algo-

rithms implemented in verigrep: RE parsing using Brzozowski

derivatives, Antimirov partial derivatives and bit-coded parsing

as described in this work. We run RE parsing experiments on a

machine with a Intel Core I7 1.7 GHz, 8GB RAM running Mac OS

X 10.12.3; the results were collected and the median of several test

runs was computed.

We use the same experiments as those used in [33]; these consist

of parsing �les containing thousands of occurrences of symbol a,

using the RE (a + b + ab)?; and parsing �les containing thousands

Certified Bit-Coded Regular Expression Parsing SBLP 2017, September 21–22, 2017, Fortaleza, CE, Brazil

of occurrences of ab, using the same RE. Results are presented in

Figures 1 and 2, respectively.

Figure 1: Results of experiment 1.

Figure 2: Results of experiment 2.

Our tool behaves poorly when compared with all other options

considered. �e cause of this ine�ciency needs further investiga-

tion, since the algorithm formalized uses the POSIX disambiguation

strategy, which avoids quotienting the result of derivative oper-

ations w.r.t. ACUI axioms as usual Brzozowski derivatives. �e

main reason behind POSIX and greedy disambiguation strategies

in derivative based parsing is to improve e�ciency by eliminating

simpli�cation steps on derivatives result [33]. We leave the proof

that the formalized algorithm indeed produces POSIX parse trees

for future work.

6 RELATEDWORK
Parsing with derivatives. Recently, derivative-based parsing has

received a lot of a�ention. Owens et al. were the �rst to present

a functional encoding of RE derivatives and use it to parsing and

DFA building. �ey use derivatives to build scanner generators for

ML and Scheme [27]; no formal proof of correctness was presented.

Might et al. [23] report on the use of derivatives for parsing not

only RLs but also context-free ones. He uses derivatives to handle

context-free grammars (CFG) and develops an equational theory for

compaction that allows for e�cient CFG parsing using derivatives.

Implementation of derivatives for CFGs are described by using the

Racket programming language [8]. However, Might et al. do not

present formal proofs related to the use of derivatives for CFGs.

Fischer et al. describe an algorithm for RE-based parsing based on

weighted automata in Haskell [12]. �e paper describes the design

evolution of such algorithm as a dialog between three persons. �eir

implementation has a competitive performance when compared

with Google’s RE library [28]. �is work also does not consider

formal proofs of RE parsing.

An algorithm for POSIX RE parsing is described in [33]. �e

main idea of the article is to adapt derivative parsing to construct

parse trees incrementally to solve both matching and submatching

for REs. In order to improve the e�ciency of the proposed algo-

rithm, Sulzmann et al. use a bit encoded representation of RE parse

trees. Textual proofs of correctness of the proposed algorithm are

presented in an appendix.

Certi�ed parsing algorithms. Certi�ed algorithms for parsing

also received a�ention recently. Firsov et al. describe a certi�ed

algorithm for RE parsing by converting an input RE to an equiv-

alent NFA represented as a boolean matrix [9]. A matrix library

based on some “block” operations [20] is developed and used Agda

formalization of NFA-based parsing. Compared to our work, a NFA-

based formalization requires a lot more infrastructure (such as a

Matrix library). No experiments with the certi�ed algorithm were

reported.

Firsov describes an Agda formalization of a parsing algorithm

that deals with any CFG (CYK algorithm) [11]. Bernardy et al. de-

scribe a formalization of another CFG parsing algorithm in Agda [4]:

Valiant’s algorithm [34], which reduces CFG parsing to boolean ma-

trix multiplication. In both works, no experiment with formalized

parsing algorithms were reported.

A certi�ed LR(1) CFG validator is described in [17]. �e formal-

ized checking procedure veri�es if CFG and an automaton match.

�ey proved soundness and completeness of the validator in the

Coq proof assistant [5]. Termination of the LR(1) automaton inter-

preter is ensured by imposing a natural number bound on allowed

recursive calls.

Formalization of a parser combinator library was the subject

of Danielsson’s work [7]. He built a library of parser combina-

tors using coinduction and provides correctness proofs of such

combinators.

Almeida et al. [1] describe a Coq formalization of partial deriva-

tives and its equivalence with automata. Partial derivatives were

introduced by Antimirov [2] as an alternative to Brzozowski deriva-

tives, since it avoids quotient resulting REs with respect to ACUI

axioms. Almeida et al. motivation is to use such formalization as a

basis for a decision procedure for RE equivalence.

SBLP 2017, September 21–22, 2017, Fortaleza, CE, Brazil Rodrigo Ribeiro and André Du Bois

Ridge [30] describes a formalization, in the HOL4 theorem prover,

of a combinator parsing library. A parser generator for such combi-

nators is described and a proof that generated parsers are sound

and complete is presented. According to Ridge, preliminary results

shows that parsers built using his generator are faster than those

created by the Happy parser generator [15].

Ausaf et. al. [3] describe a formalization, in Isabelle/HOL [25],

of the POSIX matching algorithm proposed by Sulzmann et.al. [33].

�ey give a constructive characterization of what a POSIX matching

is and prove that such matching is unique for a given RE and string.

No experiments with the veri�ed algorithm are reported.

7 CONCLUSION
We have given a complete formalization of a bit-coded derivative-

based parsing for REs in Agda. To the best of our knowledge, this

is the �rst work that presents a complete veri�cation of a bit-code

based parsing algorithm and uses it in a tool for RE-based search.

As future work, we intend to continue the development of veri-

grep by certifying greedy and POSIX disambiguation strategies and

�nite state machine based algorithms for parsing RE.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments. �is work

was conducted during a scholarship supported by PNPD at Univer-

sidade Federal de Pelotas, RS - Brazil. Financed by CAPES, Brazilian

Federal Agency for Support and Evaluation of Graduate Education

within the Ministry of Education of Brazil.

REFERENCES
[1] José Bacelar Almeida, Nelma Moreira, David Pereira, and Simão Melo de Sousa.

2010. Partial Derivative Automata Formalized in Coq. In Implementation and
Application of Automata - 15th International Conference, CIAA 2010, Winnipeg, MB,
Canada, August 12-15, 2010. Revised Selected Papers (Lecture Notes in Computer
Science), Michael Domaratzki and Kai Salomaa (Eds.), Vol. 6482. Springer, 59–68.

DOI:h�p://dx.doi.org/10.1007/978-3-642-18098-9 7

[2] Valentin Antimirov. 1996. Partial derivatives of regular expressions and �nite

automaton constructions. �eoretical Computer Science 155, 2 (1996), 291 – 319.

DOI:h�p://dx.doi.org/10.1016/0304-3975(95)00182-4

[3] Fahad Ausaf, Roy Dyckho�, and Christian Urban. 2016. POSIX Lexing with

Derivatives of Regular Expressions (Proof Pearl). In Interactive �eorem Proving
- 7th International Conference, ITP 2016, Nancy, France, August 22-25, 2016, Pro-
ceedings (Lecture Notes in Computer Science), Jasmin Christian Blanche�e and

Stephan Merz (Eds.), Vol. 9807. Springer, 69–86. DOI:h�p://dx.doi.org/10.1007/

978-3-319-43144-4 5

[4] Jean-Philippe Bernardy and Patrik Jansson. 2016. Certi�ed Context-Free Parsing:

A formalisation of Valiant’s Algorithm in Agda. CoRR abs/1601.07724 (2016).

h�p://arxiv.org/abs/1601.07724

[5] Yves Bertot and Pierre Castran. 2010. Interactive �eorem Proving and Program
Development: Coq’Art �e Calculus of Inductive Constructions (1st ed.). Springer

Publishing Company, Incorporated.

[6] Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. J. ACM 11, 4

(Oct. 1964), 481–494. DOI:h�p://dx.doi.org/10.1145/321239.321249

[7] Nils Anders Danielsson. 2010. Total Parser Combinators. SIGPLAN Not. 45, 9

(Sept. 2010), 285–296. DOI:h�p://dx.doi.org/10.1145/1932681.1863585

[8] Ma�hias Felleisen, M.D. Barski Conrad, David Van Horn, and Eight Students of

Northeastern University. 2013. Realm of Racket: Learn to Program, One Game at
a Time! No Starch Press, San Francisco, CA, USA.

[9] Denis Firsov and Tarmo Uustalu. 2013. Certi�ed Parsing of Regular Languages.

In Certi�ed Programs and Proofs - �ird International Conference, CPP 2013, Mel-
bourne, VIC, Australia, December 11-13, 2013, Proceedings (Lecture Notes in Com-
puter Science), Georges Gonthier and Michael Norrish (Eds.), Vol. 8307. Springer,

98–113. DOI:h�p://dx.doi.org/10.1007/978-3-319-03545-1 7

[10] Denis Firsov and Tarmo Uustalu. 2014. Certi�ed CYK parsing of context-free

languages. J. Log. Algebr. Meth. Program. 83, 5-6 (2014), 459–468. DOI:h�p:

//dx.doi.org/10.1016/j.jlamp.2014.09.002

[11] Denis Firsov and Tarmo Uustalu. 2014. Certi�ed {CYK} parsing of context-free

languages. Journal of Logical and Algebraic Methods in Programming 83, 5–6

(2014), 459 – 468. DOI:h�p://dx.doi.org/10.1016/j.jlamp.2014.09.002 �e 24th

Nordic Workshop on Programming �eory (NWPT 2012).

[12] Sebastian Fischer, Frank Huch, and �omas Wilke. 2010. A Play on Regular

Expressions: Functional Pearl. In Proceedings of the 15th ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP ’10). ACM, New York, NY,

USA, 357–368. DOI:h�p://dx.doi.org/10.1145/1863543.1863594

[13] Alain Frisch and Luca Cardelli. 2004. Greedy Regular Expression Matching. In

Automata, Languages and Programming: 31st International Colloquium, ICALP
2004, Turku, Finland, July 12-16, 2004. Proceedings (Lecture Notes in Computer
Science), Josep Dı́az, Juhani Karhumäki, Arto Lepistö, and Donald Sannella (Eds.),

Vol. 3142. Springer, 618–629. DOI:h�p://dx.doi.org/10.1007/978-3-540-27836-8

53

[14] Grep 2017. GNU Grep home page. h�ps://www.gnu.org/so�ware/grep/. (2017).

[15] Happy 2001. Happy: �e parser generator for Haskell.

h�p://www.haskell.org/happy. (2001).

[16] John E. Hopcro�, Rajeev Motwani, Rotwani, and Je�rey D. Ullman. 2000. Introduc-
tion to Automata �eory, Languages and Computability (2nd ed.). Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA.

[17] Jacques-Henri Jourdan, François Po�ier, and Xavier Leroy. 2012. Validating

LR(1) Parsers. In Proceedings of the 21st European Conference on Programming
Languages and Systems (ESOP’12). Springer-Verlag, Berlin, Heidelberg, 397–416.

DOI:h�p://dx.doi.org/10.1007/978-3-642-28869-2 20

[18] M. E. Lesk and E. Schmidt. 1990. UNIX Vol. II. W. B. Saunders Company,

Philadelphia, PA, USA, Chapter Lex&Mdash;a Lexical Analyzer Generator, 375–

387. h�p://dl.acm.org/citation.cfm?id=107172.107193

[19] Raul Lopes, Rodrigo Ribeiro, and Carlos Camarão. 2015. Certi�ed Derivative-

Based Parsing of Regular Expressions. In Programming Languages — Lecture
Notes in Computer Science 9889. Springer, 95–109.

[20] Hugo Daniel Macedo and José Nuno Oliveira. 2013. Typing linear algebra: A

biproduct-oriented approach. CoRR abs/1312.4818 (2013). h�p://arxiv.org/abs/

1312.4818

[21] Per Martin-Löf. 1998. An intuitionistic theory of types. In Twenty-�ve years of
constructive type theory (Venice, 1995). Oxford Logic Guides, Vol. 36. Oxford Univ.

Press, New York, 127–172.

[22] Conor McBride and James McKinna. 2004. �e View from the Le�. J.
Funct. Program. 14, 1 (Jan. 2004), 69–111. DOI:h�p://dx.doi.org/10.1017/

S0956796803004829

[23] Ma�hew Might, David Darais, and Daniel Spiewak. 2011. Parsing with Deriva-

tives: A Functional Pearl. SIGPLAN Not. 46, 9 (Sept. 2011), 189–195. DOI:
h�p://dx.doi.org/10.1145/2034574.2034801

[24] Lasse Nielsen and Fritz Henglein. 2011. Bit-coded Regular Expression Parsing.

Springer Berlin Heidelberg, Berlin, Heidelberg, 402–413. DOI:h�p://dx.doi.org/

10.1007/978-3-642-21254-3 32

[25] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. 2002. Isabelle/HOL: A
Proof Assistant for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg.

[26] Ulf Norell. 2009. Dependently Typed Programming in Agda. In Proceedings of
the 4th International Workshop on Types in Language Design and Implementation
(TLDI ’09). ACM, New York, NY, USA, 1–2. DOI:h�p://dx.doi.org/10.1145/1481861.

1481862

[27] Sco� Owens, John Reppy, and Aaron Turon. 2009. Regular-expression Derivatives

Re-examined. J. Funct. Program. 19, 2 (March 2009), 173–190. DOI:h�p://dx.doi.

org/10.1017/S0956796808007090

[28] re2 2016. Google Regular Expression Library - re2. h�ps://github.com/google/re2.

(2016).

[29] Rodrigo Ribeiro, Raul Lopes, and Carlos Camarão. 2017. Certi�ed

Derivative Based Parsing of Regular Expressions — On-line repository.

h�ps://github.com/rodrigogribeiro/regex. (2017).

[30] Tom Ridge. 2011. Simple, Functional, Sound and Complete Parsing for All

Context-free Grammars. In Proceedings of the First International Conference on
Certi�ed Programs and Proofs (CPP’11). Springer-Verlag, Berlin, Heidelberg, 103–

118. DOI:h�p://dx.doi.org/10.1007/978-3-642-25379-9 10

[31] Morten Heine Sørensen and Pawel Urzyczyn. 2006. Lectures on the Curry-Howard
Isomorphism, Volume 149 (Studies in Logic and the Foundations of Mathematics).
Elsevier Science Inc., New York, NY, USA.

[32] Aaron Stump. 2016. Veri�ed Functional Programming in Agda. Association for

Computing Machinery and Morgan; Claypool, New York, NY, USA.

[33] Martin Sulzmann and Kenny Zhuo Ming Lu. 2014. POSIX Regular Expression

Parsing with Derivatives. In Functional and Logic Programming - 12th Interna-
tional Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6, 2014. Proceedings (Lec-
ture Notes in Computer Science), Michael Codish and Eijiro Sumii (Eds.), Vol. 8475.

Springer, 203–220. DOI:h�p://dx.doi.org/10.1007/978-3-319-07151-0 13

[34] Leslie G. Valiant. 1975. General Context-free Recognition in Less �an Cubic

Time. J. Comput. Syst. Sci. 10, 2 (April 1975), 308–315. DOI:h�p://dx.doi.org/10.

1016/S0022-0000(75)80046-8

http://dx.doi.org/10.1007/978-3-642-18098-9_7
http://dx.doi.org/10.1016/0304-3975(95)00182-4
http://dx.doi.org/10.1007/978-3-319-43144-4_5
http://dx.doi.org/10.1007/978-3-319-43144-4_5
http://arxiv.org/abs/1601.07724
http://dx.doi.org/10.1145/321239.321249
http://dx.doi.org/10.1145/1932681.1863585
http://dx.doi.org/10.1007/978-3-319-03545-1_7
http://dx.doi.org/10.1016/j.jlamp.2014.09.002
http://dx.doi.org/10.1016/j.jlamp.2014.09.002
http://dx.doi.org/10.1016/j.jlamp.2014.09.002
http://dx.doi.org/10.1145/1863543.1863594
http://dx.doi.org/10.1007/978-3-540-27836-8_53
http://dx.doi.org/10.1007/978-3-540-27836-8_53
http://dx.doi.org/10.1007/978-3-642-28869-2_20
http://dl.acm.org/citation.cfm?id=107172.107193
http://arxiv.org/abs/1312.4818
http://arxiv.org/abs/1312.4818
http://dx.doi.org/10.1017/S0956796803004829
http://dx.doi.org/10.1017/S0956796803004829
http://dx.doi.org/10.1145/2034574.2034801
http://dx.doi.org/10.1007/978-3-642-21254-3_32
http://dx.doi.org/10.1007/978-3-642-21254-3_32
http://dx.doi.org/10.1145/1481861.1481862
http://dx.doi.org/10.1145/1481861.1481862
http://dx.doi.org/10.1017/S0956796808007090
http://dx.doi.org/10.1017/S0956796808007090
http://dx.doi.org/10.1007/978-3-642-25379-9_10
http://dx.doi.org/10.1007/978-3-319-07151-0_13
http://dx.doi.org/10.1016/S0022-0000(75)80046-8
http://dx.doi.org/10.1016/S0022-0000(75)80046-8

	Abstract
	1 Introduction
	2 An Overview of Agda
	3 Regular Expressions
	3.1 Standard Regular Expressions
	3.2 Bit-codes for RE Parse Trees
	3.3 Bit-annotated Regular Expressions

	4 Derivatives and Parsing
	4.1 Derivatives for Bit-annotated REs and its Properties
	4.2 Parsing

	5 Implementation Details and Experiments
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

