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Abstract

This paper considers the problem of ambiguity in Haskell-like languages.

Overloading resolution is characterized in the context of constrained polymor-

phism by the presence of unreachable variables in constraints on the type of

the expression. A new definition of ambiguity is presented, where existence of

more than one instance for the constraints on an expression type is considered

only after overloading resolution. This introduces a clear distinction between

ambiguity and overloading resolution, makes ambiguity more intuitive and in-

dependent from extra concepts, such as functional dependencies, and enables

more programs to type-check as fewer ambiguities arise.

The paper presents a type system and a type inference algorithm that in-

cludes: a constraint-set satisfiability function, that determines whether a given

set of constraints is entailed or not in a given context, focusing on issues re-

lated to decidability, a constraint-set improvement function, for filtering out

constraints for which overloading has been resolved, and a context-reduction

∗Corresponding author
Email addresses: camarao@dcc.ufmg.br (Carlos Camarão), luciliacf@gmail.com
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function, for reducing constraint sets according to matching instances. A stan-

dard dictionary-style semantics for core Haskell is also presented.

Keywords: Ambiguity; Context-dependent overloading; Haskell

1. Introduction

This paper considers the problem of ambiguity in the context of constrained

polymorphism.

We use constrained polymorphism to refer to the polymorphism originated

by the combination of parametric polymorphism and context-dependent over-

loading.

Context-dependent overloading is characterized by the fact that overloading

resolution in expressions (function calls) e e′ is based not only on the types of

the function (e) and the argument (e′), but also on the context in which the

expression (e e′) occurs. As result of this, constants can also be overloaded —

for example, literals (like 1, 2 etc.) can be used to represent fixed and arbitrary

precision integers as well as fractional numbers (for instance, they can be used

in expressions such as 1 + 2.0) — and functions with types that differ only

on the type of the result (for example, read functions can be overloaded, of

types String → Bool, String→ Int etc., each taking a string and generating

the denoted value in the corresponding type). In this way, context-dependent

overloading allows overloading to have a less restrictive and more prominent

role in the presence of parametric polymorphism, as explored mainly in the

programming language Haskell.

Ambiguity is however a major concern in context-dependent overloading.

The usual meaning of an ambiguous expression is, informally, an expression

that has more than one meaning, or an expression that can be interpreted in

two or more distinct ways.

A formalization of this, with respect to a language semantics definition by

means of type derivations, defines that an expression e is ambiguous if there

exist two or more type derivations that give the same type and may assign
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distinct semantics values to e (in the following, Γ ` e : σ specifies that type σ

is derivable for expression e in typing context Γ, using the axioms and rules of

the type system; [[Γ ` e : σ]] denotes the semantic value obtained by using such

axioms and rules):

Definition 1 (Standard Ambiguity). An expression e is called ambiguous if

there exist derivations ∆ and ∆′ of [[Γ ` e : σ]] and of [[Γ′ ` e : σ]], respectively,

such that [[Γ ` e : σ]] 6= [[Γ′ ` e : σ]], where Γ and Γ′ give the same type to every

x free in e.

This is equivalent to defining that an expression e is ambiguous if it prevents

the definition of a coherent semantics to e [1, page 286], that is, a semantics

defined by induction on the structure of expressions where the semantic value

assigned to a well-typed expression is not independent of the type derivation.

Without an explicit reference to a distinct definition, ambiguous refers to

the standard definition above.

Detection of ambiguity is usually done at compile-time, by the compiler type

analysis phase — in Haskell, by the type inference algorithm. Unfortunately,

however, detection of ambiguity can not be based on type system definitions,

at least for usual definitions, that allow context-free type instantiations, that

is, type instantiations that can be done independently of the context where an

expression occurs. This causes a well-known incompleteness problem for usual

definitions of Haskell type systems [2, 3, 4]. This problem is not the focus of

this paper.

This paper concentrates instead on another issue related to ambiguity in

Haskell, which has not received attention in the technical literature, namely the

relation between ambiguity and overloading resolution in the context of con-

strained polymorphism, in particular the fact that the possibility of inserting

new (instance) definitions disregards that an expression may be disambiguated

by occurring in some context where there exists a single instance which can be

used to instantiate type variables that do not occur in the simple type compo-

nent of the constrained type.
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Specifically, our contributions are:

• A precise characterization of overloading resolution and ambiguity.

• Discussion of Haskell’s open-world definition of ambiguity and proposal

of a new definition, called delayed-closure ambiguity, that is distinguished

from overloading resolution: in the open-world approach, ambiguity is a

syntactic property of a type, not distinguished from overloading resolu-

tion, whereas with delayed-closure this syntactic property (existence of

unreachable variables in constraints) characterizes overloading resolution,

and ambiguity is a property depending on the context where the relevant

expression occurs, namely the existence of two or more instances that en-

tail the constraint with unreachable variables. Ambiguity is tested only

after overloading resolution.

In Section 2 we present Haskell’s definition of ambiguity, called open-world

ambiguity. In Section 3 we compare open-world ambiguity with the standard,

semantical notion of ambiguity.

Substitutions, denoted by meta-variable φ, possibly primed or subscripted,

are used throughout the paper. A substitution denotes a function from type

variables to simple type expressions. φ σ and φ(σ) denote the capture-free

operation of substituting φ(α) for each free occurrence of type variable α in σ,

and analogously for the application of substitutions to constraints, sets of types

and sets of constraints.

Symbol ◦ denotes function composition, and dom(φ) = {α | φ(α) 6= α} and

id denotes the identity substitution. The restriction φ|V of φ to V denotes the

substitution φ′ such that φ′(α) = φ(α) if α ∈ V , otherwise α.

A substitution φ is more general than another φ′, written φ ≤ φ′, if there

exists φ1 such that φ = φ1 ◦ φ′.

Section 4 presents an alternative definition of ambiguity, called delayed-

closure ambiguity, that specifies essentially that:

1. Ambiguity should be checked when (and only when) overloading is re-

solved. We identify that overloading is resolved in a constraint on the
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type of an expression by the presence of unreachable variables in this con-

straint (overloading resolution is defined formally in Section 2). A type

variable that occurs in a constraint is called reachable if it occurs in the

simple type or in a constraint where another reachable type variable oc-

curs, otherwise unreachable.

This is unlike open-world ambiguity, where the existence of any type vari-

able that does not occur in the simple type component of a constrained

type implies, in the abscence of functional dependencies (see below), am-

biguity . For example, type Coll c e ⇒ c of an empty member of a class

Coll c e, is considered ambiguous in Haskell, since type variable e does not

occur in the simple type component of the constrained type Coll c e ⇒ c

(despite being reachable). In delayed-closure ambiguity, types with only

reachable type variables are not checked for ambiguity, since overloading

is still unresolved and may be resolved later, depending on a program

context in which it occurs.

2. Constraints with unreachable type variables may be removed if there exists

only a single satisfying substitution that can be used to instantiate the

unreachable type variables.

An important observation is that such constraints, removed by the exis-

tence of a single satisfying substitution, become ambiguous by the addi-

tion of further instances if a satisfying substitution exists for a removed

constraint with respect to the instances that have been added.

The specification of defaults, as proposed in subsection 4.2, allows pro-

grammers to avoid types to become ambiguous by the addition of further

instances.

Section 5 contains a description of constraint set satisfiability, focusing on

issues related to decidability. Section 6 presents a type system for a core-Haskell

language that adopts delayed-closure ambiguity. Section 7 presents a type infer-

ence algorithm for core-Haskell and discusses soundness and completeness of the

type inference algorithm with respect to the type system. Section 8 presents a a
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standard dictionary-style semantics for core Haskell. Section 9 discusses related

work and Section 10 summarizes our conclusions.

2. Open-world ambiguity

The support of overloading in Haskell is based on the definition of type

classes. A type class declaration specifies names or symbols, called class mem-

bers, and their corresponding types. Several definitions of these names can be

given, each one in an instance definition. Each definition of a name x, in an

instance definition, must have a type that is an instance of the type given to x

in the type class declaration.

Consider, for example, a declaration of type class Eq that defines symbols

(==) and (/=) and their types, for comparing if two values are equal or not,

respectively:

class Eq a where

(==) :: a → a → Bool

(/=) :: a → a → Bool

x == y = not (x /= y)

x /= y = not (x == y)

The class declaration of Eq specifies also so-called default definitions. A

default definition of a name x is assumed to be given in an instance definition

that does not specify itself a definition for x.

Instances of type class Eq defining equality and inequality of operations,

denoted by (==) and (/=), for values of types Int and Bool, can then be given

as follows, assuming that primEqInt is a primitive function for testing equality

of values of type Int:
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instance Eq Int where

(==) = primEqInt

instance Eq Bool where

True == True = True

False == False = True

== = False

It is well-known that it is possible to explore infinitary constrained poly-

morphism in Haskell, for example by defining equality for an infinite number of

types of lists, as follows:

instance Eq a ⇒ Eq [a] where

[] == [] = True

(a:x) == (b:y) = (a==b) && (x==y)

== = False

As a consequence of this instance definition, every list formed by elements which

can be compared for equality can itself be compared for equality.

Polymorphic functions may be defined by the use of polymorphic overloaded

symbols; for example:

member [] = False

member a (b:x) = (a == b) || member a x

The type of member is ∀a.Eq a⇒ a→ [a] → Bool. Constraint Eq a restricts

member to be applied only for types that are instances of type class Eq .

A type class can be defined as a subclass of an existing type class. For

example:
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class Eq a ⇒ Ord a where

(>),(>=),(<),(<=):: a→ a→ Bool

defines Ord as a subclass of Eq , which means that every type that is an instance

of Ord must also be an instance of Eq . Consider the following example:

search [] = False

search a (b:x)

| (a==b) = True

| (a<b) = False

| otherwise = search a x

The type of search is ∀a.Ord a⇒a→ [a]→Bool.

The fact that Eq is a subclass of Ord enables the constraint on the type

of search to be Ord a, instead of (Ord a, Eq a). Constraint Eq a need not be

explicitly included, because it is implied by the constraint Ord a.

x denotes the sequence x1, . . . , xn, where n ≥ 0. When used in the context of

a set, it denotes the corresponding set of elements in the sequence ({x1, . . . , xn}).

In general, in a constrained type ∀ a.C⇒ τ , C is a set of constraints, that

restricts the set of types to which ∀ a. τ may be instantiated, so that every

instance τ [a 7→ τ ] is satisfiable in the program theory, where a = a1, . . . , an, τ =

τ1, . . . , τn and τ [a 7→ τ ] denotes the simultaneous substitution of ai by τi in

τ , for i = 1, . . . , n. Notation τ [a 7→ τ ] is defined similarly for quantified types

σ (σ[a 7→ τ ]) and for constraints. Constraint-set satisfiability is discussed in

Section 5.

Ambiguity in Haskell is considered as a syntactic property on types of ex-

pressions. The definition of this property has been changing over time, since

Haskell 98, which supports only single parameter type classes (it has remained

the same in Haskell 2010): for single parameter type classes, ambiguity of a

constrained type ∀ a.C⇒τ is characterized simply by fv(C) 6⊆ fv(τ) (i.e. by the
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fact that there is a type variable that occurs in C but not in τ) [2, 5].

In the sequel we consider multi-parameter type classes (MPTCs), and Haskell

as it is defined in GHC [6] with extensions related to MPTCs (when we refer

to standard Haskell, we mean Haskell 98 or Haskell 2010). MPTCs are recog-

nized as a natural extension to Haskell, that should be incorporated into the

language. This has been recognized as early as in the original paper related to

type classes [7]. This has not happened, however, mainly because of problems

related to ambiguity, namely that the use of overloaded symbols were thought

to introduce expressions with ambiguous types.

In order to introduce support for MPTCs, the definition of ambiguity in GHC

was changed so that ambiguity could be avoided. Ambiguity of a constrained

type C ⇒ τ was changed to a definition based on the property of reachability

of type variables occurring in C, from the set of type variables occurring in the

simple type τ , where reachability is defined as follows:

Definition 2. A variable a ∈ fv(C) is called reachable from, or with respect

to, a set of type variables V if a ∈ V or if a ∈ π for some π ∈ C such that there

exists b ∈ fv(π) such that b is reachable. a ∈ fv(C) is called unreachable if it is

not reachable.

The set of reachable and unreachable type variables of constraint set C from

V are denoted respectively by reachableVars(C, V ) and unreachableVars(C, V ).

The subset of constraints with reachable and of unreachable type variables

of constraint set C from V are denoted respectively by CrV and CuV .

We also say that type variables W are reachable in constrained type C ⇒ τ

if W ⊆ reachableVars(C, fv(τ)) (and similarly for unreachable type variables

and if W is a type variable instead of a set of type variables).

For example, for type σ = ∀c, e.Coll c e ⇒ c, variable e is reachable

from {c}, the set of type variables of the simple type (c) of σ; for type σ =

∀a. (Show a,Read a) ⇒ (String → String), variable a is unreachable from the

empty set of type variables of the simple type (String → String) of σ.
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It is easy to see that, for all C, V we have that:

fv(C) = reachableVars(C, V ) ∪ unreachableVars(C, V ) and

reachableVars(C, V ) ∩ unreachableVars(C, V ) = ∅.

For example, both type variables a and b are reachable in constrained type

(F a b,O a)⇒ b, since b occurs in the simple type part (b), and a occurs in the

constraint F a b, which contains b.

We also use, in this paper, the following:

Definition 3. Overloading (of symbols that originate the constraints) in con-

straint set D occurring in an expression with a constrained type C ⇒ τ is

resolved if all type variables in D ⊆ C are unreachable from fv(τ).

For example, overloading in constraint set {F a b,O a}, as well as in both

constraints in this constraint set, of type (F a b,O a)⇒ b is yet unresolved, and

overloading is resolved for any constraint set that occurs in a constraint set on

a type where the simple type has no type variables, as {Show a,Read a} on

∀a. (Show a,Read a)⇒ String → String .

The distinction between reachable and unreachable type variables in con-

straints on types of an expression is relevant because unreachable type variables

can never be instantiated by unification with some other type, due to occurrence

of this expression in some context.

GHC defines an expression as ambiguous by ambiguity of its type C ⇒ τ ,

which does not mean simply the existence of an unreachable variable in C, with

respect to the set of type variables occurring in τ , but takes into account the use

of functional dependencies [8, 9, 10]. Following Haskell’s open-world assumption,

according to which instances may be added to a well-typed program without

causing a type error, ambiguity of a constrained type C ⇒ τ is characterized by

the existence of a type variable in C that is not uniquely determined from the

set of type variables in the simple type τ [11].

Informally, this unique determination specifies that, for each type variable

α that is in C but not in τ , there must exist a functional dependency β 7→ α,

10



for some β in τ (or a similar unique determination specified via type families,

instead of functional dependencies). In this paper we use β 7→ α, instead of

β → α, used in Haskell, to indicate a functional dependency (to avoid confusion

with the notation used to denote functions).

This unique determination has been formalized in [8, 10], upon which the

formalization of open-world ambiguity below is based.

Consider that:

1. sequences of constraints and of types can be indexed directly by type class

parameters (i.e. type variable names), taken into account that to each type

class parameter there is a corresponding integer, which gives its position

in the class declaration;

2. X 7→ Y denotes a functional dependency from the set of type variables

X to the set of type variables Y , specifying that the values in Y are

determined by those in X;

3. Fd(A) denotes the set of functional dependencies of type class A.

Then, for any constraint set C, there is a set of induced functional depen-

dencies of C, given by:

I Fd(C) = {fv(tX) 7→ fv(tY ) | A t ∈ C, (X 7→ Y ) ∈ Fd(A)}

The transitive closure of V with respect to I Fd(C), denoted by V +
IFd(C),

defines set of type variables in C that are uniquely determined from V .

For example, given class F a b | b 7→ a where ... (that specifies func-

tional dependency b 7→ a), we have that {b}+IFd(F ) = {a, b}.

We have:

Definition 4 (Open-world ambiguity). A type ∀ a.C ⇒ τ is called open-

world ambiguous (abbreviated as ow-ambiguous) if (a ∩ fv(P )) 6⊆ fv(τ)+
IFd(C).

For example, constrained type (F ab,O a)⇒ b is ow-ambiguous. To prevent
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this ambiguity, programmers can use a functional dependency (b 7→ a) in the

declaration of class F .

Figuring out which functional dependencies (or type functions) need to be

specified for dealing with ambiguity errors can be avoided with delayed-closure

ambiguity, as explained in Section 4.

We define now the set of constraints formed by class and instance declara-

tions that occur in a program, called a program theory (a term borrowed from

[12]), and constraint set provability (entailment), in a program theory.

Definition 5. A program theory P is a set of axioms of first-order logic, gen-

erated from class and instance declarations occurring in the program, as follows

(where C ⇒ π is considered syntactically equivalent to π if C is empty):

• For each class declaration

class C ⇒ TC a1 . . . an where ...

the program theory contains the following formula if C is not empty:

∀ a.C ⇒ TC a

where a = a1 . . . an.

• For each instance declaration

instance C ⇒ TC t1 . . . tn where ...

the program theory contains the following formula:

∀ a.C ⇒ TC t1 . . . tn

where a = fv(t1) ∪ . . . fv(tn) ∪ fv(C); if C is empty, then the instance

declaration is of the form

instance TC t1 . . . tn where ...
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P `e ∅
(ent0)

(∀ a.C ⇒ π) ∈ P
P `e {(C ⇒ π)[a 7→ τ ]}

(inst0)

P `e C P `e {C ⇒ π}
P `e {π}

(mp0)
P `e C P `e D
P `e C ∪D

(conj0)

Figure 1: Constraint Set Entailment

and the program theory contains the formula:

∀ a.TC t1 . . . tn

The property that a set of constraints C is entailed by a program theory

P , written as P `e C, is defined in Figure 1. Following [13, 14], entailment is

obtained from closed constraints contained in a program theory P .

3. Ambiguity and constrained polymorphism

Both the open-world and the standard definitions consider as ambiguous an

expression e that might be used in a program context where distinct instances

exist for an overloaded symbol that occurs in e. The motivation for this is that

a coherent semantics for e, obtained by using type derivations that derive the

type obtained by considering the chosen instance types are selected for each

overloaded symbol, does not exist (because distinct semantics values could be

given by considering such distinct instances).

However:

1. if the expression is effectively used in a context where overloading is re-

solved and there is a constraint on the expression’s type for which distinct

instances exist, then, and only then, a type-error, characterizing ambigu-

ity, can be detected;

2. the expression may be used only in contexts where overloading is resolved

in such a way that there exists a single instance for the type of each

overloaded symbol used in the expression.
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This indicates a prematureness of ambiguity detection because of the pos-

sibility of an expression being used in a context where two distinct types exist

for some used overloaded symbol. Such possibility is what both the open-world

and the standard definitions of ambiguity consider, albeit in different ways, as

shown in the remainder of this section.

The standard definition of ambiguity considers the existing instances but

closes the world for expressions without considering whether overloading has

been resolved or not. We consider an example below (Example 2). The open-

world definition of ambiguity disregards the existence or not of instances in the

relevant context, and considers ambiguity by the possibility of inserting any

instance definitions.

Example 1. Consider the canonical ambiguous expression in Haskell (cf. e.g. [2,

4]): (show . read), called e0 for further reference (where "." denotes function

composition).

This expression is considered ambiguous in Haskell, irrespective of the con-

text in which it occurs. This is related to the fact that instances definitions are

global, i.e. are always present in any scope. However, defaults could be speci-

fied (in this example, for Show , Read) in order to avoid ambiguity. In standard

Haskell, defaults are restricted, in a rather ad-hoc way, for constraint sets that

include a constraint on class Num. Subsection 4.2 describes the use of defaults

for avoiding ambiguity of constraint sets, and considers an extension for the use

of defaults under delayed-closure ambiguity (Section 4). Under delayed-closure

ambiguity, the type of e0 is String → String if the context has only one instance

of Show and Read ; otherwise there is a type error (unsatisfiabilty if there is no

such instance, ambiguity if there are two or more).

The fact that the simple type in the type of e0 cannot be changed by placing

e0 in another context characterizes that ambiguity (and unsatisfiability) of e0

should be checked, that is, it should be verified whether there exists or not only

one instance that satisfies the constraints on the type of the expression. If there

is only one instance, the constraints are satisfied, and can then be removed from
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the type of the expression (in the example, the type of (show . read) can be

simplified from ∀a. (Show a,Read a)⇒ (String → String) to String→ String .

Although both open-world and standard definitions of ambiguity both dis-

regard whether overloading is or is not yet resolved and both anticipate the test

of ambiguity, they disagree in key aspects: there are expressions that are unam-

biguous according to the standard definition but ow-ambiguous and vice-versa.

Examples of the first case occur both when overloading is and is not resolved.

e0 is an example of when overloading is resolved: it is always ow-ambiguous, and

standard ambiguity depends on the existence of two or more instances of (Show

a, Read a) (in this case, the standard definition agrees with delayed-closure,

presented in the next section). The following is an example of an expression for

which overloading is not yet resolved (and is therefore not ambiguous according

to the delayed-closure approach), that is ow-ambiguous and can be ambiguous

or not according to the standard interpretation.

Example 2. Consider expression ((+) 1) — which in Haskell can be written

as (1+) —, in a program with classes Sum and NumLit , given in a program

with the following classes, where 1 is considered to have type ∀a.NumLit a⇒ a:

class Sum a b c where

(+):: a → b → c

class NumLit a where ...

We have that (1+) is considered ow-ambiguous, but the standard definition

would consider it ambiguous only if there exist two or more instances of the

type of (1+), namely ∀a, b, c. (NumLit a,Sum a b c) ⇒ b → c, in the program.

For example, let P0 be a program theory that contains instances Sum Int Float

Float , Sum Float Float Float , NumLit Int and NumLit Float . Then (1+) is

considered ambiguous, according to the standard definition, in P0.

Both open-world and standard ambiguity disregard that overloading is not

yet resolved, and that the test of ambiguity should not be done yet, since the
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type of the polymorphic expression (1+) can still change depending on the con-

text where it is used (in this case, both disagree with delayed-closure, described

in the next section; remember: overloading is not yet resolved for an expression

of type ∀a, b, c. (NumLit a,Sum a b c)⇒ b→ c).

4. Delayed-closure ambiguity

In this section we present an approach for dealing with ambiguity in Haskell

that uses the presence of unreachable variables in a constraint for characterizing

overloading resolution (or, more precisely, for characterizing that overloading

should have been resolved), instead of characterizing ambiguity.

Informally, instead of issuing an ambiguity error, the presence of an unreach-

able type variable a from the set of type variables in fv(τ), in a constrained

type ∀ a.C ⇒ τ , triggers a test of whether this variable can be instantiated

(i.e. eliminated), because of the existence of a single instance that can be used

to instantiate it. We use the following for this.

Definition 6. Consider constrained type C ⇒ τ , program theory P , and that

type variable a occurs in π ∈ C and is unreachable with respect to fv(τ) and

consider a substitution φ, with domain restricted to unreachable type variables

in C, such that P `e φ(C). Then φ is called a satisfying substitution for C

in P . A unique satisfying substitution for C in P is called an improvement

substitution of C in P and φ(C) the improved constraint.

We can now define delayed-closure ambiguity, as follows.

Definition 7. Type ∀ a.C ⇒ τ is delayed-closure ambiguous, with respect to

a program theory P , if unreachableVars(C, fv(τ)) 6= ∅ and there exists at least

two satisfying substitutions for C in P .

If there exists no satisfying substitution for C in P then C is called unsat-

isfiable in P .
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We call improvement (cf. [15]) the process of substituting a constrained type

C ⇒ τ , in a given program theory P , by φ(C)⇒ τ , where φ(C) is the improved

constraint of C in P .

Example 3. Consider type (F a Bool) ⇒ Bool, in a program with the fol-

lowing instances (forming a program theory P ):

instance C a => F a Bool where ...

instance C Char where ...

Substitution (a 7→ Char) is the improvement substitution of (F a Bool) in P ,

and (F Char Bool) is the improved constraint of (F a Bool) in P .

Example 4. Consider a classical example of MPTCs with functional depen-

dencies1, namely matrix multiplication.

Consider the following types:

data Vector = Vector Int Int

data Matrix = Matrix Vector Vector

Consider also the following:

class Mult a b c where

(*) :: a -> b -> c

instance Mult Matrix Matrix Matrix where ...

instance Mult Matrix Vector Vector where ...

The type of x in the following example:

m1, m2, m3:: Matrix

x = (m1 * m2) * m3

1Taken from www.haskell.org/haskellwiki/Functional dependencies.
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is inferred to be Mult Matrix Matrix a,Mult aMatrix b⇒ b.

Type variable a is reachable from b, and thus, with delayed-closure ambi-

guity, there is no checking for ambiguity (no ambiguity arises, relieving the

programmer from having to figure out if and which functional dependencies

could solve the problem).

If x is used in a context that type Matrix is inferred for it (or of course if x

is declared to be of type Matrix ), then the type:

Mult Matrix Matrix a,Mult aMatrix Matrix ⇒ Matrix

can be simplified to Matrix , if there is a single instance of (Mult Matrix Matrix

a) in the current context; if another instance of (Mult Matrix Matrix a) exists

in this context, then we have ambiguity (in this case, the compiler can report a

helpful error message, informing that there are two or more instances of Mult

Matrix Matrix a in the context).

The possibility of adding further instances is possible until overloading reso-

lution. This happens when the context cannot anymore change (instantiate) the

type of the expression, because of the existence of unreachable type variables in

the constraint. The programmer can then rely on the type inference algorithm

to instantiate unreachable type variables (whenever there exists a single instance

in the context for such instantiation), relieving the programmer from having to

figure out if and which functional dependencies could solve his problem.

4.1. Discussion

Haskell’s open-world has a notable characteristic that a well-typed program

never becomes untypeable by the introduction of new instance declarations.

Delayed-closure restricts this advantage to expressions for which overloading

is not resolved; when overloading is resolved, the world is closed, i.e. existing

definitions of overloaded names are considered, by checking ambiguity and un-

satisfiability.

This seems a significant disadvantage, but let us consider further aspects.

With delayed-closure ambiguity more programs become well-typed and ambi-
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guity becomes easier to understand: under delayed-closure, ambiguity is not a

syntactic property of a type, and it does not mean a possibility, of using an

expression in a context where two or more instances for the type of the ex-

pression might exist. It means the actual fact that there exist two or more

instances, when overloading is resolved. This agrees with the usual understand-

ing of ambiguity in a natural language, that considers ambiguity for concrete

sentences, that may be interpreted in distinct ways. In our view the most im-

portant aspect is that ambiguity is distinguished from overloading resolution.

Ambiguity is tested only after overloading resolution. The notion of unsatisfia-

bility becomes a related notion, that refers to the nonexistence of instances for

entailment of a constraint set. Variables in a constraint are either all reachable

or all unreachable. If they are unreachable, the constraint can be removed (in

the case of single entailment) or there is a type-error (ambiguity in cases of

two or more, unsatisfiability in cases of no entailment). Another slight counter

weight in favour of delayed-closure ambiguity is the fact that it yields a more

symmetric treatment: for expressions for which overloading is resolved, removal

of an instance declaration may cause unsatisfiability and insertion may cause

ambiguity.

The use of delayed-closure ambiguity in Haskell would benefit by another sig-

nificant change: the ability to control exportation and importation of instances

in modules. There are several proposals for doing this (see e.g. [16, 17, 18]), but

this is left for future work.

We discuss next the specification of defaults for constraint sets in Haskell.

4.2. Defaults

Defaults can be specified in standard Haskell but only for constraint sets

where all constraints consist of classes declared in the Haskell Prelude and one

of them is class Num. Consequences of this are that predefined classes in general

and class Num in particular have to be distinguished by Haskell compilers and,

more significantly, an exceptional rule is created, without a strong technical

reason for restricting defaults to specific classes. The motivation is to avoid

19



some frequent uses of type annotations.

Distinct proposals related to changing the way of handling defaults in GHC

can be consulted at:

http://ghc.haskell.org/trac/haskell-prime/wiki/Defaulting

These include a proposal for removing the possibility of specifying defaults al-

together. We basically follow the basic proposal (number 2) related to the

possibility of specifying defaults for MPTCs.

A default clause should be in our view a top level declaration (like class

and instance declarations) to be applied only within the module containing the

declaration, and it should not be possible to either export or import defaults.

The relevant issue here is to disallow a change in the behavior of a module

because of a change in which modules are imported.

A default clause may specify a default for a constraint, which may be a type

expression (not only a type) of any kind. For example, we can have:

default (Read a) Int

default (Monad m) []

Default application is only considered for constraint sets with unreachable

variables, and the only result of applying defaults is the removal of constraints

(since a constraint which contains an unreachable type variable can only contain

unreachable type variables).

A constraint set C can be removed from (Aτ1 . . . τn), D ⇒ τ by application

of a default if and only if the following conditions hold:

1. there is a default clause of the form default (A τ) ρ in the current

module,

2. C is of the form (A ε,C ′), for some C ′ ⊆ D such that each constraint

in C has unreachable type variables, fv(C ′) ⊆ fv(A ε), and there exists a

substitution φ of C in the program theory such that φ(τ) = ρ.
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For example, considering default clause default (Read a) Int, and that

C = {Read a}, D = {Show a}, we have that the substitution φ must be such

that φ(a) = Int.

5. Satisfiability

This section contains a description of constraint set satisfiability, including

a discussion of decidability, based on work already presented in [19].

Following [15], bCcP is used to denote the set of satisfiable instances of

constraint set C with respect to program theory P :

bCcP = {φ(C) | P `e φ(C) }

Example 5. As an example, consider:

P = {∀a, b.D a b⇒ C [a] b,DBool [Bool]}

We have that bCaacP = bC[Bool][Bool]cP . Both constraints DBool [Bool]⇒

C[Bool][Bool] and C[Bool][Bool] are members of bCaacP and also members

of bC [Bool] [Bool]cP .

A proof that P `e {C[Bool][Bool]} holds can be given from the entailment

rules given in Figure 1, since this is the conclusion of rule (mp0) with premises

P `e {DBool [Bool]} and P `e {DBool [Bool]⇒ C [Bool][Bool]}, and these

two premises can be derived by using rule (inst0).

Equality of constraint sets is considered modulo type variable renaming.

That is, constraint sets C,D are also equal if there exists a renaming substi-

tution φ that can be applied to C to make φC and D equal. φ is a renaming

substitution if for all α ∈ dom(S) we have that φ(α) = β, for some type variable

β 6∈ dom(φ).

Constraint set satisfiability is in general an undecidable problem [20]. It is

restricted in this work so that it becomes decidable, as described below.

The restriction is based on a measure of constraints, given by a so-called

constraint-head-value function, based on a measure of the sizes of types in
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this constraint head. Essentially, the sequence of constraints that unify with

a constraint axiom in recursive calls of the function that checks satisfiability

or simplification of a type constraint is such that either the sizes of types of

each constraint in this sequence is decreasing or there exists at least one type

parameter position with decreasing size.

The definition of the constraint-head-value function is based on the use of

a constraint value ν(π) that gives the number of occurrences of type variables

and type constructors in π, defined as follows:

ν(C τ1 · · · τn) =
∑n
i=1 ν(τi)

ν(T ) = 1

ν(α) = 1

ν(τ τ ′) = ν(τ) + ν(τ ′)

Consider computation of satisfiability of a given constraint set C with re-

spect to program theory P and consider that, during the process of checking

satisfiability of a constraint π ∈ C, a constraint π′ unifies with the head of

constraint ∀α.C0 ⇒ π0 in P , with unifying substitution φ. Then, for any con-

straint π1 that, in this process of checking satisfiability of π, also unifies with π0,

where the corresponding unifying substitution is φ1, the following is required,

for satisfiability of π to hold:

1. ν(φπ′) is less than ν(φ1 π1) or, if ν(φπ′) = ν(φ1π1), then φπ′ 6= π′′, for

all π′′ that has the same constraint value as π′ and has unified with π0 in

process of checking for satisfiability of π, or

2. ν(φπ′) is greater than ν(φ1 π1) but then there is a type argument position

such that the number of type variables and constructors, in this argument

position, of constraints that unify with π0 decreases.

More precisely, constrain-head-value-function Φ associates a pair (I,Π) to

each constraint (∀α.P0 ⇒ π0) ∈ P , where I is a tuple of constraint values

and Π is a set of constraints. Let Φ0(π0) = (I0, ∅) for each constraint axiom

∀α. P0 ⇒ π0 ∈ P , where I0 is a tuple of n+ 1 values equal to∞, a large enough
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constraint value defined so that ∞ > ν(π) for any constraint π in the program

theory.

Decidability is guaranteed by defining the operation of updating Φ(π0) =

(I,Π), denoted by Φ[π0, π], as follows, where I = (v0, v1, . . . , vn) and π =

C τ1 · · · τn:

Φ[π0, π] =

 Fail if v′i = −1 for i = 0, . . . , n

Φ′ otherwise

where Φ′(π0) = ((v′0, v
′
1, . . . , v

′
n),Π ∪ {π})

Φ′(x) = Φ(x) for x 6= π0

v′0 =


ν(π) if ν(π) < v0 or

ν(π) = v0 and π 6∈ Π

−1 otherwise

for i = 1, . . . , n v′i =

 ν(τi) if ν(τi) < vi

−1 otherwise

Let sats1

(
π, P,∆) hold if

∆ =

(φ|fv(π)
, φC0, π0)

(∀α.C0 ⇒ π0) ∈ P,

mgu(π = π0, φ) holds


where mgu is the most general (least) unifier relation[21]: mgu(T , φ) is defined

to hold between a set of pairs of simple types or constraints T and a substitution

φ if i) φ is a unifier of every pair in T (i.e. φτ = φτ ′ for every (τ, τ ′) ∈ T , and

analogously for pairs of simple constraints (π, π′) ∈ T ), and ii) it is the least

such unifier (i.e. if φ′ is a unifier of all pairs in T , then φ ≤ φ′).

The set of satisfying substitutions for C with respect to the program theory

P is given by S, such that C `P,Φ0
sats S holds, as defined in Figure 2.

The following examples illustrate the definition of constraint set satisfiability

as defined in Figure 2. Let Φ(π).I and Φ(π).Π denote the first and second

components of Φ(π), respectively.
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C `P,Failsats ∅
(fail1)

∅ `P,Φsats {id}
(empty1)

{π} ∪ C `P,Φsats S

{π} `P,Φsats S0

S = {φ′φ | φ ∈ S0, φ
′ ∈ S1, φ(C) `P,Φsats S1}

(conj1)

sats1(π, P,∆)

S =

φ′φ (φ,D, π′) ∈ ∆, φ′ ∈ S0,

D `P,Φ[π′,φπ]
sats S0


{π} `P,Φsats S

(inst1)

Figure 2: Decidable Constraint Set Satisfiability

Example 6. Consider satisfiability of π = Eq[[I]] in P = {Eq I, ∀ a.Eq a⇒

Eq[a]}, letting π0 = Eq[a]; we have:

sats1(π, P, {
(
φ|∅, {Eq[I]}, π0

)
}), φ = [a1 7→ [I]]

S0 = {φ1 ◦ id | φ1 ∈ S1, Eq[I] `P,Φ1
sats S1}

π `P,Φ0
sats S0

where Φ1 = Φ0[π0, π], which implies that Φ1(π0) = ((3, 3), {π}), since ν(π) = 3,

and a1 is a fresh type variable; then:

sats1(Eq[I],Θ, {
(
φ′|∅, {Eq I}, π0

)
}), φ′ = [a2 7→ I]

S1 = {φ2 ◦ id | φ2 ∈ S2, Eq I `P,Φ2
sats S2}

Eq[I] `P,Φ1
sats S1

where Φ2 = Φ1[π0,Eq[I]], which implies that Φ2(π0) = ((2, 2),Π2), with Π2 =

{π,Eq[I]}), since ν(Eq[I]) = 2 is less than Φ1(π0).I.v0 = 3; then:

sats1

(
Eq I, P, {(id , ∅,Eq I)}

)
S2 = {φ3 ◦ id | φ3 ∈ S3, ∅ `P,Φ3

sats S3}

Eq I `P,Φ2
sats S2
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where Φ3 = Φ2[Eq I,Eq I] and S3 = {id} by (SEmpty1).

The following illustrates a case of satisfiability involving a constraint π′ that

unifies with a constraint head π0 such that ν(π′) is greater than the upper bound

associated to π0, which is the first component of Φ(π0).I.

Example 7. Consider satisfiability of π = A I (T 3 I) in program theory P =

{A (T a) I,∀ a, b. A (T 2 a) b⇒ Aa (T b)}. We have, where π0 = Aa (T b):

sats1

(
π, P, {(φ |∅, {π1}, π0)}

)
φ = [a1 7→ I, b1 7→ T 2 I]

π1 = A (T 2 I) (T 2 I)

S0 = {φ1 ◦ id | φ1 ∈ S1, π1 `P,Φ1
sats S1}

π `P,Φ0
sats S0

where Φ1 = Φ0[π0, π], which implies that Φ1(π0).I = (5, 1, 4); then:

sats1

(
π1,Θ, {(φ′ |∅, {π2}, π0)}

)
φ′ = [a2 7→ T 2 I, b2 7→ T I]

π2 = A (T 4 I) (T I)

S1 = {φ2 ◦ [a1 7→ T 2 a2] | φ2 ∈ S2, π2 `P,Φ2
sats S2}

π1 `P,Φ1
sats S1

where Φ2 = Φ1[π0, π1]. Since ν(π1) = 6 > 5 = Φ1(π0).I.v0, we have that

Φ2(π0).I = (−1,−1, 3).

Again, π2 unifies with π0, with unifying substitution φ′ = [a3 7→ T 4 I, b2 7→

I], and updating Φ3 = Φ2[π0, π2] gives Φ3(π0).I = (−1,−1, 2). Satisfiability

is then finally tested for π3 = A (T 6 I)I, that unifies with A (T a) I, returning

S3 = {[a3 7→ T 5 I]|∅} = {id}. Constraint π is thus satisfiable, with S0 = {id}.

The following example illustrates a case where the information kept in the

second component of Φ(π0) is relevant.

Example 8. Consider the satisfiability of π = A (T 2 I) F in program theory

P = {A I (T 2 F),∀ a, b. A a (T b)⇒ A (T a) b} and let π0 = A (T a) b. Then:
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sats1(π, P, {
(
φ |∅, {π1}, π0

)
})

φ = [a1 7→ (T I), b1 7→ F]

π1 = A (T I) (T F)

S0 = {φ1 ◦ id | φ1 ∈ S1, π1 `P,Φ1
sats S1}

π `P,Φ0
sats S0

where Φ1 = Φ0[π0, π], giving Φ1(π0) = ((4, 3, 1), {π}); then:

sats1(π1, P, {
(
φ′ |∅, {π2}, π0

)
})

φ′ = [a2 7→ I, b2 7→ T F], π2 = A I (T 2 F)

S1 = {φ2 ◦ id | φ2 ∈ S2, π2 `P,Φ2
sats S2}

π1 `P,Φ1
sats S1

where Φ2 = Φ1[π0, π1]. Since ν(π1) = 4, which is equal to the first component

of Φ1(π0).I, and π1 is not in Φ1(π0).Π, we obtain that S2 = {id} and π is thus

satisfiable (since sats1(A I (T 2 F), P ) = {(id , ∅, A I (T 2 F)}).

Since satisfiability of type class constraints is in general undecidable [20],

there exist satisfiable instances which are considered to be unsatisfiable accord-

ing to the definition of Figure 2. Examples can be constructed by encoding

instances of solvable Post Correspondence problems by means of constraint set

satisfiability, using G. Smith’s scheme [20].

To prove that satisfiability as defined in Figure 2 is decidable, consider that

there exist finitely many constraints in program theory P , and that, for any

constraint π that unifies with π0, we have, by the definition of Φ[π0, π], that

Φ(π0) is updated so as to include a new value in its second component (otherwise

Φ[π0, π] = Fail and satisfiability yields ∅ as the set of satisfying substitutions

for the original constraint). The conclusion follows from the fact that Φ(π0) can

have only finitely many distinct values, for any π0.

5.1. Improvement

In this paper, improvement filters out constraints with unreachable type

variables (remember that the presence of unreachable type variables in a con-

straint is an indication that overloading has been resolved) from a constraint C,
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V = fv(τ) CuV `
P,Φ0
sats {φ}

C ⇒ τ `Pimpr CrV ⇒ τ

Figure 3: Constraint Set Improvement

on a constrained type C ⇒ τ . Improvement tests satisfiability on Cufv(τ)
(the

subset of constraints of C with unreachable type variables) and removes Cufv(τ)

if each constraint in this subset has a single satisfying substitution.

If the set S of satisfiable instances of Cufv(τ)
has more than one element, or if

it is empty, there is no improved constraint (improvement is a partial relation).

Improvement is defined in Figure 3 (Φ0 is as defined in section 5, page 22).

5.2. Context Reduction

Context reduction is a process that reduces a constraint π into constraint

set D according to a matching instance for π in the relevant program theory P :

if there exists (∀α.C ⇒ π′) ∈ P such that φ(π′) = π, for some φ such that φ(C)

reduces to D; if there is no matching instance for π or no reduction of φ(C) is

possible, then π reduces to (a constraint set containing only) itself.

As an example of a context reduction, consider an instance declaration that

introduces ∀a.Eq a ⇒ Eq[a] in program theory P ; then Eq[a] is reduced to

Eq a.

Context reduction can also occur due to the presence of superclass class

declarations, but we only consider the case of instance declarations in this paper,

which is the more complex process. The treatment of reducing constraints due

to the existence of superclasses is standard; see e.g. [2, 5, 3].

Context reduction uses matches, defined as follows:

matches
(
π, (P,Φ′),∆) holds if

∆ =

(φ(C0), π0,Φ
′)

(∀α.C0 ⇒ π0) ∈ P,

mgm(π0 = π, φ), Φ′ = Φ[π0, π]


where mgm is analogous to mgu but denotes the most general matching substi-

tution, instead of the most general unifier.
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∅ `P,Φred ∅; Φ
(red)

{π} `P,Φred C; Φ1 D `P,Φ1
red D′; Φ′

{π} ∪D `P,Φred C ∪D′; Φ′
(conj)

matches
(
π, (P,Φ), {(C, π′,Φ′)}

)
C `P,Φ

′

red D; Φ′′

{π} `P,Φred D; Φ′′
(inst)

matches
(
π, (P,Φ), {(C, π′,Φ′)}

)
C `P,Φ

′

red D; Fail

{π} `P,Φred {π}; Fail
(stop0)

matches
(
π, (P,Φ), {(C, π′,Fail)}

)
{π} ∪ C `P,Φred {π} ∪ C; Fail

(stop)

Figure 4: Context Reduction

The third parameter of matches is either empty or a singleton set, since

overlapping instances [22] are not considered.

Context reduction, defined in Figure 4, uses rules of the form C `P,Φred D; Φ′,

meaning that either C reduces toD under program theory P and least constraint

value function Φ, causing Φ to be updated to Φ′, or C `P,Failred C; Fail . Failure

is used to define a reduction of a constraint set to itself.

The least constraint value function is used as in the definition of sats to

guarantee that context reduction is a decidable relation.

An empty constraint set reduces to itself (red). Rule (conj) specifies that

constraint set simplification works, unlike constraint set satisfiability, by per-

forming a union of the result of simplifying separately each constraint in the

constraint set. To see that a rule similar to (conj) cannot be used in the

case of constraint set satisfiability, consider a simple example, of satisfiability

of C = {A a,B a} in P = {A Int, A Bool, B Int, B Char}. Satisfiability of C

yields a single substitution where a maps to Int, not the union of computing

satisfiability for A a and B a separately.

Rule (inst) specifies that if there exists a constraint axiom ∀α.C ⇒ Aτ ,

such that Aτ matches with an input constraint π, then π reduces to any con-

straint set D that C reduces to.
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Expressions e ::= x | λx. e | e e | let x = e in e

Figure 5: Context-free syntax of core Haskell expressions

Rules (stop0) and (stop) deal with failure due to updating of the constraint-

head-value function.

6. Type system

In this section we present a type system for a core-Haskell language that

adopts delayed-closure ambiguity.

We use a context-free syntax of core Haskell expressions, given in Figure

5, where meta-variable x represents a variable. Meta-variables x, y, z denote

variables and e an expression, possibly primed or subscripted. We call the

language core Haskell (not core ML) because expressions are considered to be

typed in a program theory (as defined in Section 1), with information about

overloaded symbols generated from class and instance declarations.

A context-free syntax of constrained types is presented in Figure 6, where

meta-variable usage is also indicated. For simplicity and following common

practice, kinds are not considered in type expressions (and thus type expressions

which are not simple types are not distinguished from simple types). Also, type

expression variables are called simply type variables.

We assume that a program theory is part of a typing context Γ, and can

be denoted by PΓ. The initial, global typing context under which program

expressions are considered to be typed contain all assumptions x : σ, where x

is a member of a type class A (declared as class C ⇒ A α where ...x ::

τ...) and σ = ∀α.A a ⇒ τ is the type obtained including in α type variables

in fv(τ) ∪ α ∪ fv(C).

We use:

Γ(x) = {σ | (x : σ) ∈ Γ, for some σ}

Γ	 x = Γ− {(x : σ) ∈ Γ}

Γ, x : σ = (Γ	 x) ∪ {x : σ}

29



Class Name A,B

Type variable a, b, α, β

Type constructor T

Simple Constraint π ::= Aτ

Unquantified Constraint ψ ::= C ⇒ π

Constraint θ ::= ∀α.ψ

Set of Unquantified Constraints C,D

Constrained Type δ ::= C ⇒ τ

Simple Type τ, ρ, ε ::= α | T | τ τ

Type σ ::= ∀α. δ

Program Theory P,Q

Figure 6: Types, constraints and meta-variable usage

σ ≤ φσ π ≤ φπ

PΓ = PΓ′ Γ(x) ≤ Γ′(x) for all x ∈ dom(Γ)

Γ ≤ Γ′

Figure 7: Partial order on Types, Constraints and Typing Contexts

A partial order on types, constraints and typing contexts is defined in Figure 7.

Note that type ordering disregards constraint set satisfiability. Satisfiability

is only important when considering whether a constraint set C can be removed

from a constrained type C,D ⇒ τ (C can be removed if and only if overloading

for C has been resolved and there exists a single satisfying substitution for C;

see Figure 8).

A type system for core Haskell is presented in Figure 9, using rules of the

form Γ ` e : ψ, which means that e has type ψ in typing context Γ. The rules are

similar to those for core ML [23, 24, 25, 26], with differences in rules (APP) and

(LET). Rule (LET) performs constraint set simplification before type generalization.

In rule (APP), the constraints on the type of the result are those that occur
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C `Pimpr D D `Pred C ′

C >>P C ′

Figure 8: Constraint set simplification

in the function type plus not all constraints that occur in the type of the ar-

gument but only those that have variables reachable from (the set of variables

that occur in) the simple type of the result (this has been already defined in

[19]). This allows, for example, not including constraints on the type of the

following expressions, where o is any expression, with a possibly non-empty set

of constraints on its type: flip const o (where const has type ∀a, b. a→ b→ a

and flip has type ∀a, b, c. (a → b → c) → b → a → c), which should denote an

identity function, and fst (e, o), which should have the same denotation as e.

C⊕V D denotes the constraint set obtained by adding to C constraints from

D that have type variables reachable from V :

P ⊕V Q = P ∪ {ψ ∈ Q | fv(ψ) ∩ reachableVars(Q,V ) 6= ∅}

gen(ψ, σ, V ) holds if σ = ∀α.ψ, where α = fv(ψ)− V .

Relation >>P is a simplification relation on constraints, defined as a compo-

sition of improvement and context reduction, defined respectively in subsections

5.1 and 5.2.

7. Type inference

In this section we present a type inference algorithm for core-Haskell, and

discuss soundness and completeness of type inference with respect to the type

system.

A type inference algorithm for core Haskell is presented in Figure 10, using

rules of the form Γ `i e : (ψ, φ), which means that ψ is the least (principal) type

of (derivable for) e in typing context φΓ, where φΓ ≤ Γ and, whenever Γ′ ≤ Γ is

such that Γ′ `i e : (ψ′, φ′), we have that φΓ ≤ Γ′ and ψ′ ≤ φψ. Furthermore, we

have that φΓ `i e : (ψ, φ′) holds whenever Γ `i e : (ψ, φ) holds, where φ′ ≤ φ

(cf. theorem 1 below).
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(x : σ) ∈ Γ σ ≤ ψ
Γ ` x : ψ

(VAR)

Γ, x : τ ` e : C ⇒ τ ′

Γ ` λx. e : C ⇒ τ → τ ′
(ABS)

Γ ` e : C ⇒ τ ′ → τ Γ ` e′ : C ′ ⇒ τ ′

(C ⊕fv(τ)
C ′) >>PΓ

D

Γ ` e e′ : D ⇒ τ
(APP)

Γ ` e : C ⇒ τ C >>PΓ
D

gen(D ⇒ τ, σ, fv(Γ)) Γ, x :σ ` e′ : ψ
Γ ` let x = e in e′ : ψ

(LET)

Figure 9: Type System

Example 9. Consider expression x and typing context Γ = {f : Int→ Int , x :

α}; we can derive Γ `i f x : (Int, φ), where φ = [α 7→ Int]. From φΓ = {f :

Int→ Int, x : Int}, we can derive φΓ `i f x : (Int, id).

Theorem 1. If Γ `i e : (ψ, φ) holds then φΓ `i e : (ψ, φ′) holds, where φ′ ≤ φ.

Furthermore, for all typing contexts Γ′ with the same quantified type assump-

tions as Γ — i.e. for all Γ′ such that P ′Γ = PΓ and for which (x : ∀α. σ) ∈ Γ′

implies (x : ∀α. σ) ∈ Γ —, if Γ′ `i e : (ψ′, φ′) is derivable, for some ψ′, φ′, we

have that φΓ ≤ Γ′, ψ ≤ ψ′ and φ′ ≤ φ.

mguI is a function that gives a most general unifier of a set of pairs of simple

types (or simple constraints). mguI(τ = τ ′, φ) is an alternative notation for

mgu
(
{(τ, τ ′)}, φ

)
). We have:

Theorem 2 (Soundness). If Γ `i e : (ψ, φ) holds then φΓ ` e : ψ holds.

Theorem 3 (Principal type inference). If Γ `i e : (ψ, φ) holds then, for all ψ′

such that Γ ` e : ψ′ holds, we have that ψ ≤ ψ′.

A completeness theorem does not hold. For example, consider expression e0

32



(x : ∀α.ψ) ∈ Γ β fresh

Γ `i x : (ψ[α 7→ β], id)
(VARi)

Γ, x : α `i e : (C ⇒ τ, φ) α fresh τ ′ = φα

Γ `i λx. e : (C ⇒ τ ′ → τ, φ)
(ABSi)

Γ `i e : (C ⇒ τ1, φ1) φ1Γ `i e′ : (C ′ ⇒ τ2, φ2)

φ′ = mguI(τ1 = τ2 → α) α fresh, φ = φ′ ◦ φ2 ◦ φ1

τ = φα, V = fv(τ) (φC ⊕V φC ′) >>PΓ D

Γ `i e e′ : (D ⇒ τ, φ)
(APPi)

Γ `i e : (C ⇒ τ, φ1) C >>PΓ
C ′

gen(σ,C ′ ⇒ τ, fv(φ1Γ)) φ1Γ, x :σ `i e2 : (ψ, φ)

Γ `i let x = e in e′ : (ψ, φ)
(LETi)

Figure 10: Type Inference

of Example 1; we have that there exists Γ such that Γ ` e0 : String → String

holds but there is no ψ, φ such that Γ ` e0 : (ψ, φ) holds.

In our opinion, the greater simplicity obtained by allowing type instantiation

to be done (“guessed”) in a context-independent way, does not compensate the

disadvantages of allowing ambiguous expressions to be well-typed and of having

several translations for expressions, one of them a principal translation. We

prefer a declarative specification of type inference, that allows a unique type

to be derivable for each expression, where type instantiation is restricted to be

done only in a context-dependent way, given by considering functions, used in

the type inference algorithm, as relations. In other words, the type inference

algorithm can be obtained from a declarative specification of type inference by

transforming relations used into functions; see [19]. The fact that every element

is an element of a unique type is a bonus that agrees with everyday spoken

language. It is straightforward to define, a posteriori, the set of types that are

instances of the type of an expression.
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The fact that only a single type can be derived for each expression rules out

the possibility of having distinct type derivations. Thus, an error message for

an expression such as (show . read), in a context with more than one instance

for Show and Read , should be that the expression can not be given (there is no

type that would allow it to have) a well-defined semantics. Distinct meanings

of (show . read) would be obtained from distinct instance types of show , read .

In the next section we give a semantics by induction on the derivation of

the type of an expression by considering functions used in the type inference

algorithm (mguI , gen, >>P ) as relations.

8. Semantics

The semantics of core Haskell, given in Figure 11, follows a standard core

Haskell semantics [7, 2, 5], based on the application of (so-called) dictionaries

to names with constrained types. A dictionary is a tuple of denotations of defi-

nitions given in an instance declaration; in other words, denotations of instance

members. A dictionary of a superclass contains also a pointer to a dictionary

of each of its subclasses, but the treatment of superclasses is standard and is

omitted in this paper (see e.g. [2, 5, 3]).

A fundamental characteristic of core Haskell is that the semantics of an

expression depends on its type. The semantics is defined below by induction on

the rules of a type system where each variable occurrence has its type annotated

(there is no guessing of types). The type annotated for a variable in rule (VARs) is

the greatest instance-type of the variable occurrence in the relevant typing and

program contexts, as specified by Definition 8 below, where a program context

C[e] is an expression that has e as a subexpression. The type annotated for

a lambda-bound variable is the type of the function parameter, and the type

annotated for a let-bound variable is the type of its defining expression. Type

annotations are indicated by a dot in bold face font (as in x : σ) in Figure 11.

Definition 8. φ′ψ is an instance-type of e in Γ (and an instance-type of e in

Γ and program context C[e]) if both Γ `i e : (ψ, φ) and Γ `i C[e] : (ψ′, φ′) are
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derivable, for some φ, ψ′.

Furthermore, ψ is the greatest (most specific) instance-type for e in Γ and

program context e′ = C[e], modulo type variable renaming, denoted by git(e,Γ, e′),

if ψ is an instance-type of e in Γ and program context C[e] and there is no

instance-type ψ′ of e in Γ and program context C ′[e′] such that ψ′ is distinct

from ψ and ψ ≤ ψ′.

Example 10 below gives two distinct greatest instance-types of (==) in the

same typing context and distinct program contexts (where B and C can be seen

as abbreviations of Bool and Char respectively).

Example 10. Let {(==) : ∀a.Eq a⇒ a→ a→ B, True : B, ′∗′ : C} ⊆ Γ, PΓ =

{Eq B, Eq C}, e = ((==) True,(==) ’*’). Then Γ `i e :
(
(B → B, C → B), φ

)
is derivable, where φ = [a 7→ B, b 7→ C] and a, b are fresh type variables.

Instance-types of (==) in program contexts (==)True and (==) ’*’ are

respectively B→ B→ B and C→ C→ B.

Typing formulas have the form Γ `a e : ψ, except that types of variables are

annotated, as mentioned. A formal description of how to compute the annotated

type of variables is left for further work.

For each class declaration class C ⇒ Aα where x :: τ , a selection function

is generated for each overloaded name xi in x. Such name denotes, in the

semantics, a function that merely selects the i-th component of a dictionary

(tuple) parameter; if n = 1, selection corresponds to the identity function. For

example, class Eq generates a pair of functions, with names ((==) and (/=))

that in the translation denote functions (fst and snd) for selecting respectively

the first and second components of a pair.

C denotes a sequence of constraints of C in a standard (lexicographical)

order.

Each instance declaration

instance C ⇒ π where x = e
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generates either a dictionary or a dictionary constructor dπ, according to whether

C is empty or not, respectively. A dictionary constructor takes as parameter

one dictionary for each constraint in the sequence C and yields the dictionary

of π. The instance declaration makes η(π) equal to dπ and η(xi, τi) = (dπ, C).

If there is no instance declaration for π, we assume that η(π) is undefined.

If x is (not an instance member but) a let-bound variable, then η(x, τ) is

made equal (d0, C), where a generalization of C ⇒ τ is the type of x; d0 is an

indication that no dictionary or dictionary constructor is associated to (x, τ);

d0 is used as indication that x is a let-bound variable of constrained type, not

an instance member.

For example, for a typing context Γ associated to a program that defines

instances of classes Eq for Char and lists, we have, where dEqChar is a dictio-

nary of class Eq Char and dEqL is a dictionary constructor that constructs a

dictionary of class Eq for lists of values of type a from a dictionary of values of

(any) type a:

η(Eq Char) = dEqChar

η(Eq[a])) = dEqL

where a is a fresh, arbitrary type variable, and :

η((==),Char → Char → Bool) = (dEqChar , ∅)

η((==), [a]→[a]→Bool) = (dEqL, {Eq a})

Let η†(C 7→ v) be equal to η[π1 7→ v1, . . . , πn 7→ vn], where C = {π1, . . . , πn}.

vSeq(C) denotes a sequence of fresh variables vi, one for each πi in the

sequence C.

η(x, τ,Γ) gives the semantics of possibly overloaded name x with type C ⇒ τ ,

for some C, in typing context Γ. The translation of an overloaded name x that

is an instance member is a selection from a dictionary (possibly constructed

by passing pertinent dictionaries to a dictionary constructor). Otherwise, the

translation is not a selection but a function call that passes pertinent dictionar-

ies, one for each constraint in the constraint set on the type of x, to an already

defined function.
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[[Γ `a x : C ⇒ τ ]]η = η(x, τ,Γ) : τ
(VARs)

[[Γ, x : τ ′ ` e : (C ⇒ τ, φ)]]η = e : τ

[[Γ `a λx. e : (C ⇒ τ ′ → τ, S)]]η = λx. e : τ ′ → τ
(ABSs)

[[Γ `a e : C ⇒ (τ ′ → τ)]]η = e : τ ′ → τ

[[Γ `a e′ : C ′ ⇒ τ2]]η = e’ : τ ′

C|∗fv(τ)
>>PΓ D

[[Γ `a e e′ : D ⇒ τ ]]η = e e’ : τ
(APPs)

[[Γ `a e : C ⇒ τ ]]η1 = e : τ1

C >>PΓ
D, v = vSeq(D), gen

(
σ,D ⇒ τ, fv(Γ)

)
η1 = η † (D 7→ v), η′ = η †

(
(x, τ) 7→

(
d0, D

))
[[Γ, x :σ `a e′ : D ⇒ τ ]]η′ = e’ : τ

[[Γ `a let x : σ = e in e′ : δ]]η = let x = λv. e in e’ : τ
(LETs)

Figure 11: Core Haskell Semantics

η(C) denotes the sequence η(π1) . . . η(πn), where C = π1 . . . πn; the dictio-

nary for constraint π is given by from η(π). We have:

η(x, τ,Γ) =


x if C0 = ∅

x v if d = d0

x(d v) otherwise

where: (∀α.C0 ⇒ τ0) = Γ(x)

φ = mgu(τ, τ0), v = η(φD), (d,D) = η(x, τ)

Note that the constraint set C on x’s type is disregarded in the semantics,

which uses Γ(x) to obtain the original constraint set used in the definition

of x; simple type τ is used to instantiate the original constraint set. This is

done because constraints removed from C due to overloading resolution must

be considered in the semantics. We have:

Theorem 4. For any derivations ∆,∆′ of typing formulas Γ `a e : φ and

Γ′ `a e : φ, respectively, where Γ and Γ′ give the same type to every x free in e,
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we have

[[Γ `a e : φ]]η = [[Γ′ `a e : φ]]η

where the meanings are defined using ∆ and ∆′, respectively.

The proof is straightforward: since Γ and Γ′ give the same type to every x

free in e and the type system rules are syntax-directed, ∆ and ∆′ are the same.

Consider the following Haskell program extract:

Example 11.

class TEq a where

teq:: a → a → (Bool,String)

instance TEq Int where

teq i i′ = (i==i′,show i ++ " " ++ show i′)

instance (TEq a, Show a) ⇒ TEq [a] where

teq [] [] = (True,"")

teq (a:x) (b:y) = let (ab,sab) = teq a b

(xy,sxy) = teq x y

in (ab && xy, sab ++ sxy)

teq = (False,"")

teqww x = (teq [[x]],teq([1,2,3]::[Int])) --(1)

Several name bindings in a let-expression, the use of a variable pattern in

a definition and a definition without a let-binding are considered to be syn-

tactic sugar for, respectively, nested let-expressions, a definition of a lambda-

abstraction and a definition of the form let teqww = λx. e in teqww .

The first occurrence of teq in line (1) above is translated to teq( dTEqLv1v2),

where teq ’s translation is the identity function, dTEqL is a dictionary with a

single function, say teqL, that receives the two dictionary arguments v1 and

v2 passed to teqww and yields teqL, the translation of function teq for lists

defined above. The translation is given with respect to environment η such that
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η({TEq a,Show a}) = v (where v is the sequence v1 v2), and η(teq, τ) = dTEqL,

where τ = [[a]]→ [[a]]→(Bool,String).

We have also that η(TEq Int) is equal to a dictionary with just one member

(say, dTEqInt), and similarly for η(Show Int). The translation of the second

occurrence of teq in line (1) above is equal to:

teq(dTEqL dTEqInt dShowInt)

The use of dictionaries and the ensuing dictionary construction and selection

of member values at run-time can be avoided by passing values that correspond

to overloaded names that are in fact used. For example, an equality function for

lists can receive just an equality function for list elements, instead of a dictionary

containing also an unused inequality function. Passing a dictionary to perform

selection at run-time is unnecessary. Full laziness and common subexpression

elimination are techniques used to avoid repeated construction of dictionaries

at run-time [2, 3, 27, 28], but the optimization could be avoided a priori. This

and related implementation issues are however outside of the scope of this paper

and are left for further work.

Note that the constraints on types of expressions are considered in the se-

mantics only in the cases of polymorphic and constrained overloaded variables.

Consider for example expression eqStar given by (intended for comparison of

the semantics of (==) with those of expressions (==) x and (==) x y):

let eq = λx. λy. (==) x y in eq ’*’

In a context where (==) has type Eq a ⇒ a → a → Bool, the translation of

eqStar is given by:

let eq = λv. λx. λy. (==) v x y in eq dictEqChar ’*’

We have that (==) v and eq dictEqChar denote a primitive equality function

for characters, say primEqChar . The translation of each occurrence of (==)

passes a pertinent dictionary to (==) so that the type obtained is the expected

type for an equality function on values of type t. Both expressions (==) x and
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(==) x y have also constrained types, but a dictionary is passed only in the

case of (==). The semantics of an expression with a constrained type where

the set of constraints is non-empty only considers this set of constraints if the

expression is an overloaded variable; otherwise constraints are disregarded in

the semantics. Furthermore, since each occurrence of an overloaded variable

has a translation that is the application of pertinent dictionary values to that

variable, translation of types with constraints are never input or output values

of the translation function.

9. Related Work

Blott [29] and Jones [2] have presented coherent semantics for ow-unambiguous

expressions.

Sulzmann et al. [12] consider the encoding of multi-parameter type classes

with functional dependencies via constraint handling rules [30]. In their work,

as in many other related works (e.g. [31]), ambiguity means ow-ambiguity. Sulz-

mann et al.’s definition of ow-ambiguity is based on provability of constraints in

a program theory, using constraint-handling rules (instead of being a definition

that the set of type variables of a constraint set is not a subset of the set of

induced functional dependencies of a simple type).

Functional dependencies, introduced in Haskell in order to allow the infer-

ence of more specific types and to avoid ambiguity errors, also allow computa-

tions at the type level, because of reductions forced by functional dependencies

on the type inference algorithm. Type level programming based on functional

dependencies has been explored for example in [32, 33] and has been used for

instance to define heterogeneous collections and database access libraries for

Haskell [34, 35]. The use of delayed-closure ambiguity eliminates the need of

functional dependencies to avoid ambiguity but does not allow type level pro-

gramming, which relies on the fact that type specialization occurs in types that

involve reachable type variables.

The delayed-closure approach described in this paper can be seen as a vari-
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ation of Agda’s approach to overloading [36]. Agda uses a context-independent

approach where any use of an overloaded name requires overloading to be re-

solved. There is no support for constrained types, that allow overloading res-

olution to be deferred. Overloading works though as in the delayed-closure

approach, being based on verifying whether there exists or not a a single defi-

nition of a value in scope at the call site [36] that is of the type of a so-called

instance argument . If no such unique definition exists, a type error is reported.

An instance argument is similar to an implicit argument in Agda, but, in-

stead of just requiring a dummy value to be inserted for an implicit argument,

it is required that there exists a unique definition of the type of the instance

argument in the current scope.

The delayed-closure approach does not have (and could be used to avoid)

Agda’s restriction to non-recursive resolution for instance arguments, in cases

where overloading resolution requires a recursive search for verification of unique-

ness of satisfiability. This can be done without the introduction of constrained

types. The addition of constrained types in Agda requires further investigation.

10. Conclusion

This paper discusses the problem of ambiguity in Haskell-like languages. A

definition of ambiguity, called delayed-closure, is presented, where the existence

of more than one instance (and more than one type derivation) for the same

type of an expression is considered only when there exist unreachable variables

in the constraints on the type of an expression. The presence of unreachable

variables in constraints characterizes the nonexistence of a program context in

which the expression could be placed that would allow instantiation of these

variables and overloading resolution.

The paper describes an approach for using default declarations for avoiding

ambiguity by the addition of new instance declarations, but leaves for further

work a proposal for allowing the importation and exportation of type class

instances.
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Adopting delayed-closure ambiguity in Haskell would eliminate the need

of using functional dependencies or type families for the purpose of dealing

with ambiguity. It would also enable Haskell compilers to provide more help-

ful ambiguity-related error messages. There would be no influence on well-

typed Haskell programs, but programs which currently cause ambiguity errors

in Haskell could then become well-typed.

The paper presents a type system and a type inference algorithm that in-

cludes a constraint-set satisfiability function, that determines whether a given

set of constraints is entailed or not in a given context, focusing on issues re-

lated to decidability, a constraint-set improvement function, for filtering out

constraints for which overloading has been resolved, and a context-reduction

function, for reducing constraint sets according to matching instances. A stan-

dard dictionary-style semantics for core Haskell is also presented.

As future work, we intend to investigate also the use of delayed-closure

ambiguity in connection with type families.
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