
Journal of Brazilian Computer Society manuscript No.
(will be inserted by the editor)

Ambiguity and Context-dependent Overloading

Rodrigo Ribeiro · Carlos Camarão

Received: date / Accepted: date

Abstract This paper discusses ambiguity in the con-

text of languages that support context-dependent over-

loading, such as Haskell.

A type system for a Haskell-like programming lan-

guage, that supports context-dependent overloading and

follow the Hindley-Milner approach of providing context-

free type instantiation, allows distinct derivations of the

same type for ambiguous expressions. Such expressions

are usually rejected by the type inference algorithm,

which is thus not complete with respect to the type

system.

Also, Haskell’s open world approach considers a def-

inition of ambiguity that does not conform to the ex-

istence of two or more distinct type system derivations

for the same type. The article presents an alternative

approach, where the standard definition of ambiguity
is followed. A type system is presented that allows only

context-dependent type instantiation, enabling only one

type to be derivable for each expression in a given typ-

ing context: the type of an expression can be instanti-

ated only if required by the program context where the

expression occurs. We define a notion of greatest in-

stance type for each occurrence of an expression, which

is used in the definition of a standard dictionary-passing

semantics for core Haskell based on type system deriva-

tions, for which coherence is trivial. Type soundness is

obtained as a result of disallowing all ambiguous ex-

pressions and all expressions involving unsatisfiability

in the use of overloaded names.

Following the standard definition of ambiguity, sat-

isfiability is tested — i.e. “the world is closed” — if only

Rodrigo Ribeiro, Carlos Camarão
Instituto de Ciências Exatas, Departamento de Ciência da
Computação, Universidade Federal de Minas Gerais. E-mail:
{rribeiro,camarao}@dcc.ufmg.br.

if overloading is (or should have been) resolved, that is,

if and only if there exist unreachable variables in the

constraints on types of expressions. Nowadays satisfi-

ability is tested in Haskell, in the presence of multi-

parameter type classes, only upon the presence of func-

tional dependencies or an alternative mechanism that

specifies conditions for closing the world, and that may

happen when there exist or not unreachable type vari-

ables in constraints. The satisfiability trigger condition

is then given automatically, by the existence of unreach-

able variables in constraints, and does not need to be

specified by programmers, using an extra mechanism.

1 Introduction

Parametric polymorphism allows instantiation of quan-

tified variables α, in quantified types ∀α.σ, to all types

[α := τ]σ, that is, every type generated from σ by re-

placing free occurrences of type variable α in σ by an

arbitrary type τ (the notion of free and bound variables

is well known; see e.g. [8,1]). Type τ is restricted in ML

and Haskell to be any simple (unquantified) type, char-

acterizing an important restriction of the so-called ML-

style or Let-polymorphism. Constrained polymorphism

allows instantiation of quantified type variables to be

restricted to some, instead of being possible to occur

for all simple types. The set of types to which a type

variable can be instantiated depends on the types of

definitions of overloaded names (or symbols) that exist

in the relevant context.

Constrained polymorphism is supported in program-

ming languages like Haskell by context-dependent over-

loading , which is a form of overloading in which the

decision of which definition of an overloaded name is

used depends on the context where this name is used.

2 Rodrigo Ribeiro, Carlos Camarão

In other words, in any expression f e, the decision of

which f is called or which e is applied depends not only

on the types of f and e, but also on the context in which

f e is used.

In such systems, ambiguity becomes a concern. The

existence of ambiguous expressions prevents a coherent

semantics to be defined by induction on type system

derivations, where coherence establishes a single well-

defined meaning for each expression. That is, a coherent

semantics is such that, for any well-typed expression e:

“if ∆ and ∆′ are derivations of typing formulas

Γ ` e : σ and Γ ′ ` e : σ, respectively, and Γ and

Γ ′ give the same type to every x free in e, then

[[Γ ` e : σ]]η = [[Γ ′ ` e : σ]]η

where the meanings are defined using ∆ and ∆′,

respectively.” [8]

An expression e of type σ for which there exist two

distinct syntax-driven derivations (∆ and ∆′, for which

distinct semantic values might be assigned to e) is called

ambiguous, in a typing context that gives the same

type to every x free in e as Γ and Γ ′. The restriction

to syntax-driven derivations avoids differences that are

neither related to the syntax of terms nor to the used

typing information.

A type system for a Haskell-like programming lan-

guage, that supports context-dependent overloading and

follow the Hindley-Milner approach of providing context-

free type instantiation, allows distinct derivations of the

same type to be derivable for some expressions, which

are then ambiguous. Such expressions are usually re-

jected by the type inference algorithm, which becomes

then not complete with respect to the type system. This

article addresses this issue by considering an alterna-

tive approach that disallows context-independent type

instantiation for type systems that support context-

dependent overloading.

Ambiguity in the presence of context-dependent over-

loading is discussed, in the traditional way of allowing

context-independent type instantiation and by char-

acterizing ambiguity as a syntactic property of con-

strained types, by M. Jones [12] and P. Stuckey and

M. Sulzmann [14]. The unfortunate lack of complete-

ness of type inference algorithms and incoherence of

semantics definitions are reported by D. Vytiniotis et

al. [22]. K. Faxén [6] expresses wishes for a determinis-

tic way to outlaw ambiguity in the type system, at the

same time recognizing the need for the description to

remain more abstract than that obtained directly from

the type inference algorithm. In our view the abstract

view is provided by the fact that the type system is de-

fined in terms of relations, not functions, and the type

inference algorithm can be obtained by transforming

these relations into functions.

This paper presents an alternative approach to type

inference in the presence of Haskell-style constrained

type classes. The key feature of the type system is that

it allows only context-dependent instantiation, so an

expression, if typeable, has a unique type derivation.

We can therefore define the semantics over these type-

derivations, thereby ensuring coherence. The declara-

tiveness of the specification of the type system is, in

our view, equivalent to it being given by a relation

(between typing contexts, expressions and polymorphic

constrained types), not as a function. In order to trans-

form it into a type inference algorithm, it suffices to

transform all used relations (used in the definition of

such a relation) into functions.

The fact that the type system allows only context-

dependent type instantiation eliminates the problem of

the lack of principal type caused by user-specified type

signatures, reported by K. Faxén [10, Section 3].

The article presents also an alternative approach

for dealing with ambiguity in the context of Haskell’s

open world approach. In Haskell an expression is con-

sidered as ambiguous without conformance to the exis-

tence of two or more distinct derivations of the same

type for this expression. Ambiguity is considered in

Haskell as a syntactic condition on type expressions,

conflicting with the standard semantically-related defi-

nition given above. This occurs because Haskell uses an

open world approach to overloading, according to which

new definitions of overloaded names might be inserted

without altering the typability of expressions. This pa-

per presents an alternative approach where there is no

conflict with the standard semantic definition of am-

biguity, built upon the distinction between ambiguity

and resolved overloading. In this approach the possi-

bility of inserting new definitions (i.e. openness of the

world) is restricted to when overloading is not resolved.

When overloading is resolved, existing definitions of

overloaded names are then considered, in order to check

ambiguity.

With the purpose of clarifying these issues, namely

that ambiguity is distinct from resolved overloading,

and that ambiguity should be considered if and only

if (or when and only when) overloading is resolved, we

present and discuss examples in the next section, which

consider ambiguity in the presence of multi-parameter

type classes, where ambiguity becomes more relevant.

In section 3 we define a mini-language called core Haskell

that supports context-dependent overloading and multi-

parameter type classes, and define a type system that

avoids ambiguous expressions to be well-typed. In sec-

Ambiguity and Context-dependent Overloading 3

tion 4 we define a semantics by induction on core Haskell’s

type system derivations. Section 5 concludes.

2 Ambiguity and Overloading Resolution

Example 1 Consider expression f o, used in a context

where f and o have the following types:

f:: Int → Int

f:: Int → Float

f:: Float → Float

o:: Int

o:: Float

In Haskell extended with multi-parameter type classes,

referred to as Haskell+MPTC in the sequel, this can be

achieved by considering that there exist declarations of

type classes F a b and O a where f and o have been

annotated in these classes with types a → b and a,

respectively, and there exist also instance definitions

F Int Int , F Int Float , F Float Float , O Int and OFloat .

In Haskell+MPTC expression f o is not ambiguous,

because overloadings of f and o have not been resolved.

The main purpose of this example is to show that we

can have, if context-independent type instantiation is

allowed, two derivations of the same type (Float) with

distinct semantics, for an expression that is not am-

biguous: one derivation for f of type Int → Float, and

another for f of type Float → Float .

This example also illustrates that this occurs despite

the fact that f o has type (F a b,O a)⇒ b, where type

variable a occurs in the constraints but not in the simple

type (b), considering that f is a member of type class

F with two parameters a, b, having (implicitly quantifi-

able) type F a b ⇒ a → b, and o is a member of type

class O with (implicitly quantifiable) type O a⇒ a.

In Haskell, a syntactic condition on type expressions

that characterizes overloading whose resolution cannot

be further deferred (i.e. must have occurred), which we

call overloading resolution condition, characterizes also

“type ambiguity”. It is a syntactic condition, that con-

flicts with the standard definition of ambiguity, based

on the existence of distinct type system derivations of

the same type for an expression.

The overloading resolution condition used in Haskell

(Haskell 98 or Haskell 2010), which supports only single

parameter type classes, has been changed in Haskell im-

plementations that support multi-parameter type classes.

In the case of single parameter type classes, the over-

loading resolution condition for constrained type P ⇒ τ

is simply tv(P) 6⊆ tv(τ) (i.e. there is a type variable that

occurs in P but not in τ). In the case of multi-parameter

type classes, the condition considers so-called reach-

able type variables. A type variable occurring in P is

reachable, from a set of type variables tv(τ) in a con-

strained type P ⇒ τ , if it occurs in τ or if it occurs

in a constraint in P where another reachable type vari-

able occurs (if a type variable is not reachable, it is, of

course, unreachable). In the example above, type vari-

able a in (F ab,Oa)⇒ b occurs in the set of constraints

({F a b,O a}) but not in the simple type (b). This does

not characterize that overloading must have been re-

solved, because type variable a is reachable, since it

occurs in constraint F a b, where another reachable

type variable (b) occurs. This idea, used nowadays in

Haskell implementations that support multi-parameter

type classes, appeared firstly in [2], as far as we know.

If used in a program context that requires f o to be

of type Int — in an expression such as, for example,

f o + (1::Int) —, overloadings of f and o in f o are

resolved, with f and o having types Int→ Int and Int ,

respectively.

If used in a program context that requires f o to

be of type Float , overloadings of f and o in f o cannot

be resolved, and then, in the context of this example,

we have ambiguity. If used in a program context that

requires f o to be of a type τ distinct from Int and

Float , overloadings of f and o in f o cannot be resolved

either, but we have then, in the context of this example,

unsatisfiability, since we cannot have a derivation of

such type τ for e in this context.

Example 2 Let e0 be the expression show . read (where

"." denotes function composition, so e0 can be written

also as (λx -> show(read x)). In Haskell, this expres-

sion is considered as ambiguous, irrespective of the con-

text in which it occurs (see e.g. [12,22]).

When used in a context with two or more instance

definitions, of classes Show and Read , that give func-

tions show and read types, say, show : Int → String ,

show : Bool → String , read : String → Int and read :

String → Bool , expression e0 is ambiguous: there exist

two distinct derivations of type String → String for e0
(one using read and show with types read:String→ Int

and show:Int→String , and the other using read and

show with types read:String→Bool and show:Bool→
String , respectively), and each one would give it distinct

meanings.

However, if e0 is used in a context with a single in-

stance for both show and read , say show:Int→String

and read:String→ Int , then there is no ambiguity, since

there exists only one derivation for e0 of type String→
String . If there are no definitions of show or no defi-

nitions of read in the typing context, again there is an

error, but of unsatisfiability, not ambiguity.

Example 3 Consider expression [] == [], where (==)

is overloaded and [] denotes an empty list.

4 Rodrigo Ribeiro, Carlos Camarão

The expression is ambiguous (according to the stan-

dard definition), if and only if there exist two or more

distinct type system derivations — each given (==) dis-

tinct types, say [T1] → [T1] → Bool and [T2] →
[T2] → Bool — that may thus assign distinct mean-

ings to ([] == [])::Bool in the relevant context. We

could have instances of (==) for types [T1] and [T2]

for which ([] == []) are assigned (unexpectedly) se-

mantic value False if [] has type [T1], and True if

[] has type [T2]. In Haskell this is not possible with-

out overlapping instances or without hiding the Haskell

prelude definition of (==) for lists.

Example 4 Let e1 be the expression fst(True,o), where

o is overloaded (or is an expression with a constrained

type). This expression has type Bool . Overloading of o

is not resolved, but it need not be for e1 to be well-typed

(and evaluated, as equal to True).

The ambiguity or not of e1 in GHC [21] and its inter-

active interpreter counterpart GHCi, the most widely

used implementations of Haskell, depends on which o is

used and on whether the compiler, GHC, or an interac-

tive session of the interpreter, GHCi, is used. In GHC

and in non-interactive sessions of GHCi, e1 is not well-

typed. In an interactive session (i.e. if it is typed at the

GHCi’s prompt), if o has only constraints on some par-

ticular type classes (namely Eq, Ord, Num and Show),

it has type Bool.

3 Core Language

We use a context-free syntax of core Haskell expres-

sions, given in Figure 1, where meta-variable x repre-

sents a variable. We use meta-variables x, y, z for vari-

ables, and e for expressions, possibly primed or sub-

scripted. The language of terms is called here core Has-

kell (not core ML) because expressions occur in a global

context with information about overloaded symbols.

Expressions e ::= x | λx. e | e e | let x = e in e

Figure 1: Context-free syntax of core Haskell expres-

sions

A context-free syntax of constrained types is pre-

sented in Figure 2, where meta-variable usage is also

indicated. For simplicity and following common prac-

tice, kinds are not considered in type expressions and

type expressions which are not simple types are not

explicitly distinguished from simple types. Also, type

expression variables are called simply type variables.

Class Name C,D
Type variable α, β
Type constructor T
Simple Constraint π ::= C τ
Set of Simple Constraints P,Q
Constraint φ ::= P ⇒ π
Closed Constraint θ ::= ∀α. φ
Overloading Environment
Set of Closed Constraints Θ
Simple Type τ ::= α | T | τ τ
Constrained Type ρ ::= P ⇒ τ
Type σ ::= ∀α. ρ

Figure 2: Types, constraints and meta-variable usage

x denotes the sequence x1, . . . , xn, where n ≥ 0.

When used in the context of a set, it denotes the corre-

sponding set of elements in the sequence ({x1, . . . , xn}).
We assume for simplicity that overloaded definitions

are predefined, and form a global overloading environ-

ment (cf. e.g. [12,7,11]). The global overloading envi-

ronment is always a fixed set of closed constraints, being

an unchanged part of typing contexts. We write ΘΓ to

mean a fixed, global overloading environment that is

assumed to be a part of typing context Γ .

A substitution, denoted by meta-variable S, pos-

sibly primed or subscripted, is a function from type

variables to simple type expressions. The identity subs-

titution is denoted by id . Sσ represents the capture-

free operation of substituting S(α) for each free occur-

rence of type variable α in σ. Sθ and sets of types and

constraints are defined analogously. Symbol ◦ denotes

function composition, and dom(S) = {α | S(α) 6= α}.
S[α 7→ τ] denotes updating of S, that is, the substi-

tution S′ such that S′(β) = τi if β = αi, for i = 1, . . . , n,

otherwise S(β). We use this function updating nota-

tion for other functions other than substitutions. Also,

[α 7→ τ] = id[α 7→ τ].

The restriction S|V of S to V denotes the substi-

tution S′ such that S′(α) = S(α) if α ∈ V , otherwise

α.

A substitution S is said to be more general than a

substitution S′, written S ≤ S′, if there is a substitution

S1 such that S′ = S1 ◦ S.

We use:

Γ (x) = {σ | (x : σ) ∈ Γ, for some σ}
Γ, x : σ = (Γ 	 x) ∪ {x : σ}
Γ 	 x = Γ − {(x : σ) ∈ Γ}

A type system for core Haskell is presented in Figure

3, using rules of the form Γ ` e : (φ, S), which means

that e has type φ in typing context Γ . We have that

S Γ ` e : (φ, S′) holds whenever Γ ` e : (φ, S) holds,

Ambiguity and Context-dependent Overloading 5

where S′ ≤ S. Program contexts in which e occurs may

instantiate e’s type, as stated in Theorem (1) below.

Example 5 As an example of a program context re-

quiring type instantiation, which occurs as a result of

function application, consider expression x and typing

context Γ = {f : Int → Int , x : α}; we can derive Γ `
f x : (Int , S), where S = [α 7→ Int]. From S Γ = {f :

Int → Int , x : Int}; we can derive S Γ ` e : (Int , id).

In general, we have the following, where a program

context C[e] is an expression which has e as a subex-

pression, and orderings on types and typing contexts

are as defined in Figure 4.

Theorem 1 If Γ ` e : (φ, S) holds then S Γ ` e :

(φ, S0) holds, where S0 ≤ S.

Furthermore, for all program contexts C[e] in which

e occurs and all typing contexts Γ ′ such that Γ ≤ Γ ′

and Γ ′ ` C[e] : (φ′, S′) is derivable, for some φ′, S′, we

have that S ≤ S′.

For each expression e, there is a unique type φ deri-

vable for e in a typing context Γ . However, expression

e can have though a set of instance-types, in program

contexts that require instantiation of φ in Γ (in fact,

in all typing contexts Γ ′ such that Γ ≤ Γ ′, cf. Theo-

rem 1). Consider the following example where B and C

represents abbreviations of Bool and Char respectively.

Example 6 Let ((==) : ∀a.Eq a ⇒ a → a → B) ∈ Γ ,

{Eq B, Eq C} ⊆ ΘΓ and e = ((==) True, (==) ’*’).

Then Γ ` e : ((B → B, C → B), S) is derivable, where

S = [a 7→ B, b 7→ C], and a, b are fresh type variables.

Instance-types of (==) in program contexts (==)True
and (==) ’*’ are respectively B→ B→ B and C→ C→
B.

Instance-types are formally defined as follows.

Definition 1 Given expression e and typing context Γ ,

we have that S′φ is an instance-type for e in Γ if Γ `
e : (φ, S) and Γ ′ ` C[e] : (φ′, S′) hold, where Γ ′ ≤ Γ .

Furthermore, S′φ is a greatest (most specific) ins-

tance-type for an occurrence of e in Γ if S′φ is an

instance-type for e in Γ and there is no instance-type

S1φ distinct from S′φ for e in Γ such that S1 ≤ S.

Distinct occurrences of an expression can have dis-

tinct greatest instance-types. For example, the instance-

types given in Example 6 are greatest instance-types for

the corresponding occurrence of (==).

mgu is the most general unifier relation[18,5,16]:

mgu(T ,S) is defined to hold between a set of pairs of

simple types or a set of constraints T and a substitution

S if the following hold: i) Sτ = Sτ ′ for every (τ, τ ′) ∈ T

(x : ∀α. φ) ∈ Γ β fresh

Γ ` x : ([α 7→ β]φ, id)
(VAR)

Γ, x : α ` e : (P ⇒ τ, S) α fresh τ ′ = S α

Γ ` λx. e : (P ⇒ τ ′ → τ, S)
(ABS)

Γ ` e1 : (P1 ⇒ τ1, S1) S1Γ ` e2 : (P2 ⇒ τ2, S2)
mgu(S2τ1 = τ2 → α, S′), α fresh
S = S′ ◦ S2 ◦ S1, τ = Sα, V = tv(τ)
P = SP1 ⊕V SP2, P |∗V >>Θ Q

Pu = P − P |∗V , Pu >>Θ Qu, Qu = ∅
Γ ` e1 e2 : (Q⇒ τ, S)

(APP)

Γ ` e1 : (φ1, S1) gen(σ, φ1, tv(S1Γ))
S1Γ, x :σ ` e2 : (φ, S)

Γ ` let x = e1 in e2 : (φ, S)
(LET)

Figure 3: Type System

σ ≤ S σ π ≤ S π

ΘΓ = ΘΓ ′ Γ (x) ≤ Γ ′(x) for all x ∈ dom(Γ)

Γ ≤ Γ ′

Figure 4: Partial order on Types, Constraints and Typ-

ing Contexts

(analogously, Sπ = Sπ′ for every (π, π′) ∈ T), and if S′

is a unifier of T , then S′ ≤ S.

When the parameter of mgu is a singleton set, fol-

lowing common practice it is written simply as an e-

quality; e.g. mgu(π = π′, S) is written instead of using

a set notation like this: mgu
(
{(π, π′)}, S

)
.

gen(σ, φ, V) holds if σ = ∀α. φ, where α = tv(φ) −
V .

The set of constraints P |∗V denotes the subset of

constraints of P with reachable type variables with re-

spect to the set of type variables V [2]. A type variable

α ∈ P is called reachable with respect to a set of type

variables V if α ∈ V or α ∈ tv(π) and there exists

β ∈ tv(π) such that β is reachable (otherwise it is an

unreachable type variable). Reachability is considered

always with respect to V = tv(τ) for a constraint set

P that occurs on a constrained type P ⇒ τ . For ex-

ample, type variables a, b are reachable and c is unrea-

chable in constraint set {C ab,D c} of constrained type

{C a b,D c} ⇒ a. Reachability is defined in Figure 5.

Given any set of type variables V , the constraints

of a constraint set P can be partitioned into two dis-

joint subsets P |∗V and P−P |∗V , the first containing con-

straints with at least one reachable type variable and

the second constraints with only unreachable type vari-

ables.

6 Rodrigo Ribeiro, Carlos Camarão

P |∗V =

{
P |V if tv(P) ⊆ V
P |∗tv(P |V) otherwise

P |V = {π ∈ P | tv(π) ∩ V 6= ∅}

Figure 5: Constraints Reachable from a set of type vari-

ables

P⊕VQ denotes the constraint set obtained by adding

from Q only constraints with type variables reachable

from V , i.e. P ⊕V Q = P ∪ Q|∗V [2,3]. This takes into

account that, in an application of a function with type,

say τ1 → τ , to an expression with type P ⇒ τ1, it is

not always adequate to include in the constraint set of

the result all constraints from Q. This occurs because

constraints in P may refer to disregarded, non-selected

parts of the argument. Consider for example expres-

sion fst(True, o) (cf. section 2), where o has any type

with non-empty constraints. The type of this expres-

sion should be Bool , that is, constraints on the type of

o should not be part of the set of constraints on the

type of fst(True, o).

Relation >>Θ is a simplification relation on cons-

traints, defined as a composition of improvement and

context reduction, defined respectively in subsections

3.3 and 3.4. Firstly, the more basic relations of entail-

ment and satisfiability are defined, in subsections 3.1

and 3.2, respectively, which are used in the definitions

of improvement and context reduction.

P `Θimpr P ′ P ′ `Θred Q
P >>Θ Q

Figure 6: Constraint set simplification

Qu in rule (APP) represents the set of constraints with

unreachable type variables (subscript u in Qu is an ab-

breviation of unreachable). The side-condition of rule

APP expresses that Qu should be empty. An empty set

of constraints Qu is obtained after checking satisfiabil-

ity on the set of constraints Pu, if Pu has unreachable

variables, and after removing these constraints with un-

reachable variables, by context reduction, if there exists

a single satisfying solution for such constraints (cf. Def-

inition of >>Θ in Figure 6).

The article proposes to treat ambiguity by following

a standard definition of ambiguity, that consists in: test

satisfiability (i.e. “close the world”) if overloading is re-

solved (or should have been resolved), that is, if there

exist unreachable variables in the constraints. Nowa-

days, satisfiability is tested in Haskell, in the presence

of multi-parameter type classes, only upon the presence

of functional dependencies (or a similar mechanism),

that closes the world when there exist or not unreach-

able type variables. Our treatment of ambiguity thus re-

stricts the cases where satisfiabilty is tested, in case, say,

a mechanism such as that of functional dependencies is

used, and allows to avoid the use of such mechanism

(of functional dependencies, or a similar one). In the

latter case, the satisfiability trigger condition becomes

the existence of unreachable variables, which may then

be instantiated if there exists a single satisfying substi-

tution.

The type system uses relations (mgu, gen, >>Θ).

The facts that it is syntax-directed and type instantia-

tion occurs only if required by a program context allow

a sound and complete type inference algorithm to be ob-

tained by transforming these relations into computable

functions.

The fact that the type system does not allow context-

free type instantiation and allow the derivation of a

single type for an expression in a given typing con-

text makes it look closer to a type inference algorithm.

Context-dependent notions of instance-types and most

specific instance-type for each occurrence of an expres-

sion, in a given typing context, are introduced and used

in the paper, instead of the standard context-independent

notion of principal type.

Typability of function application f e in this type

system considers f e to be well-typed, where f has type

τ1 and e has type τ2, if there exists types τ → τ ′ and τ

that are respective subtypes of τ1 and τ2, where subty-

ping is simply a matching relation, as defined in Figure

4.

3.1 Entailment

The property that a set of constraints P can be proven

from (are entailed by) constraints in an overloading en-

vironment Θ, written as Θ ` P , is defined in Figure

7. Following [11,4], entailment is obtained from closed

constraints only, contained in a fixed set of constraints

Θ.

Θ ` ∅
(ENT0)

(∀α. P ⇒ π) ∈ Θ
Θ ` {[α 7→ τ](P ⇒ π)}

(INST)

Θ ` P Θ ` {P ⇒ π}
Θ ` {π}

(MP)
Θ ` P Θ ` Q
Θ ` P ∪Q (CONJ)

Figure 7: Constraint Set Entailment

Ambiguity and Context-dependent Overloading 7

3.2 Satisfiability

Following [13], bP cΘ is used to denote the set of satis-

fiable instances of constraint set P with respect to Θ:

bP cΘ = {SP | Θ ` SP }

Example 7 As an example, consider:

Θ = {∀a, b.D a b⇒ C [a] b,DBool [Bool]}

Then, we have that bC a acΘ = bC [Bool] [Bool]cΘ.

Both constraints D Bool [Bool] ⇒ C [Bool] [Bool]

and C [Bool] [Bool] are members of bC a acΘ (and of

bC [Bool] [Bool]cΘ).

A proof that Θ ` {C [Bool] [Bool]} holds can

be given from the entailment rules given in Figure 7,

since this is the conclusion of rule (MP) with premises

Θ ` {D Bool [Bool]} and Θ ` {D Bool [Bool] ⇒
C [Bool] [Bool]}, and these two premises can be de-

rived by using rule (INST).

Equality of constraint sets is considered modulo type

variable renaming. That is, constraint sets P,Q are also

equal if there exists a renaming substitution S that can

be applied to P to make S P and Q equal. S is a re-

naming substitution if for all α ∈ dom(S) we have that

S(α) = β, for some type variable β 6∈ dom(S).

If SP ∈ bP cΘ then S is called a satisfying substitu-

tion for P .

Constraint set satisfiability is in general an undecid-

able problem [19]. It is restricted and redefined here by

using a constraint-head-value finite function, in order

to obtain decidability, as described below.

Constraint set satisfiability and simplification use

both the same termination criterion, which is based on

a measure of the sizes of types in type constraints, given

the the constraint-head-value function. The sequence

of constraints that unify with a constraint axiom in

recursive calls of the function that checks satisfiability

or simplification of a type constraint is such that either

the sizes of types of each constraint in this sequence is

decreasing or there exists at least one type parameter

position with decreasing size.

Constraint set satisfiability is defined so that we can

obtain a sound and complete type inference algorithm,

by just transforming the relations defined in the type

system into functions.

The definition of the constraint-head-value function

is based on the use of a constraint value ν(π) that gives

the number of occurrences of type variables and type

constructors in π, defined as follows:

ν(C τ1 · · · τn) =
∑n
i=1 ν(τi)

ν(T) = 1

ν(α) = 1

ν(τ τ ′) = ν(τ) + ν(τ ′)

Consider computation of satisfiability of a given con-

straint set P with respect to constraint axioms Θ. Con-

sider that, for checking satisfiability of a constraint π ∈
P , a constraint π′ unifies with the head of constraint

∀α.P0 ⇒ π0 ∈ Θ, with unifying substitution S, and

suppose also that satisfiability of π requires also that

some constraint π1 unifies with π0, giving correspond-

ing unifying substitution S1. We require the following

in order for satisfiability of π to hold:

1. ν(Sπ′) is less than ν(S1π1) or, if ν(Sπ′) = ν(S1π1),

then Sπ′ 6= π′′, for any π′′ that has the same con-

straint value as π′ and unification with π0 is required

for satisfiability of π to hold, or

2. Sπ is such that there is a type argument position

0 ≤ i ≤ n such that the number of type variables

and constructors, in this argument position, of con-

straints that unify with π0 is always decreasing.

More precisely, constrain-head-value-function Φ as-

sociates a pair (I,Π) to each constraint (∀α.P0 ⇒
π0) ∈ Θ, where I is a tuple of constraint values and Π

is a set of constraints. Let Φ0(π0) = (I0, ∅) for each con-

straint axiom ∀α. P0 ⇒ π0 ∈ Θ, where I0 is a tuple of

n+1 values equal to∞, a large enough constraint value

defined so that ∞ > ν(π) for any constraint π ∈ Θ.

Decidability is guaranteed by defining the operation

of updating Φ(π0) = (I,Π), denoted by Φ[π0, π], as

follows, where I = (v0, v1, . . . , vn) and π = C τ1 · · · τn:

Φ[π0, π] =

{
Fail if v′i = −1 for i = 0, . . . , n

Φ′ otherwise

where Φ′(π0) = ((v′0, v
′
1, . . . , v

′
n), Π ∪ {π})

Φ′(x) = Φ(x) for x 6= π0

v′0 =


ν(π) if ν(π) < v0 or

ν(π) = v0 and π 6∈ Π
−1 otherwise

for i = 1, . . . , n v′i =

{
ν(τi) if ν(τi) < vi
−1 otherwise

Let sats1
(
π,Θ,∆) hold if

∆ =

{
(S|tv(π), SP0, π0)

(∀α. P0 ⇒ π0) ∈ Θ,
mgu(π = π0, S) holds

}
The set of satisfying substitutions for constraint set

P with respect to the set of constraint axioms Θ is given

by S, such that P `Θ,Φ0
sats S holds, as defined in Figure 8.

The following examples illustrate the definition of

constraint set satisfiability as defined in Figure 8. Let

Φ(π).I and Φ(π).Π denote the first and second compo-

nents of Φ(π), respectively.

8 Rodrigo Ribeiro, Carlos Camarão

P `Θ,Failsats ∅
(SatFail1)

∅ `Θ,Φsats {id}
(SatEmpty1)

{π} `Θ,Φsats S0
S = {S′S | S ∈ S0, S′ ∈ S1, SP `Θ,Φsats S1}

{π} ∪ P `Θ,Φsats S
(SatConj1)

sats1(π,Θ,∆)

S =

{
S′S

(S,Q, π′) ∈ ∆, S′ ∈ S0,
Q `Θ,Φ[π′,Sπ]

sats S0

}
{π} `Θ,Φsats S

(SatInst1)

Figure 8: Decidable Constraint Set Satisfiability

Example 8 Consider satisfiability of π = Eq[[I]] in

Θ = {Eq I, ∀ a.Eq a ⇒ Eq[a]}, letting π0 = Eq[a];

we have:

sats1(π,Θ, {
(
S|∅, {Eq[I]}, π0

)
}), S = [a1 7→ [I]]

S0 = {S1 ◦ id | S1 ∈ S1, Eq[I] `Θ,Φ1
sats S1}

π `Θ,Φ0
sats S0

where Φ1 = Φ0[π0, π], which implies that Φ1(π0) =

((3, 3), {π}), since ν(π) = 3, and a1 is a fresh type vari-

able; then:

sats1(Eq[I], Θ, {
(
S′|∅, {Eq I}, π0

)
}), S′ = [a2 7→ I]

S1 = {S2 ◦ id | S2 ∈ S2, Eq I `Θ,Φ2
sats S2}

Eq[I] `Θ,Φ1
sats S1

where Φ2 = Φ1[π0,Eq[I]], which implies that Φ2(π0) =

((2, 2), Π2), with Π2 = {π,Eq[I]}), since ν(Eq[I]) =

2 is less than Φ1(π0).I.v0 = 3; then:

sats1
(
Eq I, Θ, {(id , ∅,Eq I)}

)
S2 = {S3 ◦ id | S3 ∈ S3, ∅ `Θ,Φ3

sats S3}
Eq I `Θ,Φ2

sats S2
where Φ3 = Φ2[Eq I,Eq I] and S3 = {id} by (SEmpty1).

The following illustrates a case of satisfiability in-

volving a constraint π′ that unifies with a constraint

head π0 such that ν(π′) is greater than the upper bound

associated to π0, which is the first component of Φ(π0).I.

Example 9 Consider the satisfiability of π = C I (T 3 I)

in Θ = {C (T a) I,∀ a, b. C (T 2 a) b ⇒ C a (T b)}. We

have, where π0 = C a (T b):

sats1
(
π,Θ, {(S |∅, {π1}, π0)}

)
S = [a1 7→ I, b1 7→ T 2 I]

π1 = C (T 2 I) (T 2 I)

S0 = {S1 ◦ id | S1 ∈ S1, π1 `Θ,Φ1
sats S1}

π `Θ,Φ0
sats S0

where Φ1 = Φ0[π0, π], which implies that Φ1(π0).I =

(5, 1, 4); then:

sats1
(
π1, Θ, {(S′ |∅, {π2}, π0)}

)
S′ = [a2 7→ T 2 I, b2 7→ T I]

π2 = C (T 4 I) (T I)

S1 = {S2 ◦ [a1 7→ T 2 a2] | S2 ∈ S2, π2 `Θ,Φ2
sats S2}

π1 `Θ,Φ1
sats S1

where Φ2 = Φ1[π0, π1]. Since ν(π1) = 6 > 5 = Φ1(π0).I.v0,

we have that Φ2(π0).I = (−1,−1, 3).

Again, π2 unifies with π0, with unifying substitu-

tion S′ = [a3 7→ T 4 I, b2 7→ I], and updating Φ3 =

Φ2[π0, π2] gives Φ3(π0).I = (−1,−1, 2). Satisfiability is

then finally tested for π3 = C (T 6 I)I, that unifies with

C (T a) I, returning S3 = {[a3 7→ T 5 I]|∅} = {id}. Con-

straint π is thus satisfiable, with S0 = {id}.

The following example illustrates a case where the

information kept in the second component of Φ(π0) is

relevant.

Example 10 Consider the satisfiability of π = C (T 2 I) F

in Θ = {C I (T 2 F),∀ a, b. C a (T b)⇒ C (T a) b} and let

π0 = C (T a) b. Then:

sats1(π,Θ, {
(
S |∅, {π1}, π0

)
})

S = [a1 7→ (T I), b1 7→ F]

π1 = C (T I) (T F)

S0 = {S1 ◦ id | S1 ∈ S1, π1 `Θ,Φ1
sats S1}

π `Θ,Φ0
sats S0

where Φ1 = Φ0[π0, π], giving Φ1(π0) = ((4, 3, 1), {π});
then:

sats1(π1, Θ, {
(
S′ |∅, {π2}, π0

)
})

S′ = [a2 7→ I, b2 7→ T F], π2 = C I (T 2 F)

S1 = {S2 ◦ id | S2 ∈ S2, π2 `Θ,Φ2
sats S2}

π1 `Θ,Φ1
sats S1

where Φ2 = Φ1[π0, π1]. Since ν(π1) = 4, which is equal

to the first component of Φ1(π0).I, and π1 is not in

Φ1(π0).Π, we obtain that S2 = {id} and π is thus satis-

fiable (since sats1(C I (T 2 F), Θ) = {(id , ∅, C I (T 2 F)}).

Since satisfiability of type class constraints is in gen-

eral undecidable [19], there exist satisfiable instances

which are considered to be unsatisfiable according to

the definition of Figure 8. Examples can be constructed

by encoding instances of solvable Post Correspondence

problems by means of constraint set satisfiability, using

G. Smith’s scheme [19].

Ambiguity and Context-dependent Overloading 9

To prove that satisfiability as defined in Figure 8 is

decidable, consider that there exist finitely many con-

straints in Θ, and that, for any constraint π that uni-

fies with π0, we have, by the definition of Φ[π0, π], that

Φ(π0) is updated so as to include a new value in its

second component (otherwise Φ[π0, π] = Fail and sat-

isfiability yields ∅ as the set of satisfying solutions for

the original constraint). The conclusion follows from

the fact that Φ(π0) can have only finitely many distinct

values, for any π0.

3.3 Improvement

Improvement is a satisfiability preserving relation: im-

provement of constraint set P is the process of finding

a least general substitution S such that S P preserves

the set of satisfiable instances of P [12].

In this paper, improvement is used to remove un-

reachable type variables for resolving overloading, when

overloading resolution cannot be further deferred, and

for detecting ambiguity or unsatisfiability, if unreach-

able type variables cannot be removed (that is, over-

loading resolution is not possible). For any constrained

type P ⇒ τ , improvement is tested only upon the pres-

ence of unreachable type variables, that is, if Pu =

P − P |∗tv(τ) 6= ∅.
This is a consequence of the side-condition (Qu = ∅)

in rule (APP), Figure 3.

If the set S of satisfiable instances of Pu has more

than one element, we have ambiguity; if S is empty, we

have unsatisfiability; otherwise, if S is a singleton {S},
then P is improved to SP , which can is then reduced to

a set of constraints without unreachable type variables
(that is, the set of constraints in S Pu can be removed,

since overloading is resolved).

Improvement is defined in Figure 9, where Φ0 is as

defined in section 3.2, page 7.

P `Θ,Φ0
sats S Q = S P if S = {S}, otherwise P

P `Θimpr Q

Figure 9: Constraint Set Improvement

3.4 Context Reduction

Informally speaking, context reduction is a process that

reduces a constraint π into Q if there is a matching

instance for π in Θ, that is, there exists (∀α. P ⇒ π′) ∈
Θ such that Sπ′ = π, for some S, and S P reduces to Q.

If there is no matching instance for π or no reduction

of S P is possible, then π reduces to itself. Note that

constraint sets can be reduced into larger constraint

sets.

As an example of a context reduction, consider an

instance declaration that introduces ∀a.Eq a⇒ Eq[a]

in Θ; then Eq[a] is reduced to Eq a.

Context reduction can also occur due to the pres-

ence of superclass class declarations, but we only con-

sider the case of instance declarations in this paper,

which is the more complex process. The treatment of

reducing constraints due to the existence of superclasses

is standard; see e.g. [12,7,6].

Context reduction uses matches, defined as follows:

matches
(
π, (Θ,Φ′), ∆) holds if

∆ =

{
(SP0, π0, Φ

′)
(∀α. P0 ⇒ π0) ∈ Θ,
mgm(π0 = π, S), Φ′ = Φ[π0, π]

}
where mgm is analogous to mgu but denotes the most

general matching substitution, instead of the most gen-

eral unifier.

The third parameter of matches is either empty or

a singleton set, since overlapping instances [20] are not

considered.

Context reduction, defined in Figure 10, uses rules of

the form P `Θ,Φred Q;Φ′, meaning that either P reduces

to Q under the set of closed constraints Θ and least

constraint value function Φ, causing Φ to be updated

to Φ′, or P `Θ,Failred P ; Fail .

Failure implies that a constraint set is updated to

itself.

The least constraint value function is used as in the

definition of sats to guarantee that context reduction is

a decidable relation.

∅ `Θ,Φred ∅;Φ
(RED0)

{π} `Θ,Φred P ;Φ1 Q `Θ,Φ1
red Q′;Φ′

{π} ∪Q `Θ,Φred P ∪Q′;Φ′
(CONJ)

matches
(
π, (Θ,Φ), {(P, π′, Φ′)}

)
P `Θ,Φ

′

red Q;Φ′′

{π} `Θ,Φred Q;Φ′′
(INST)

matches
(
π, (Θ,Φ), {(P, π′, Φ′)}

)
P `Θ,Φ

′

red Q;Fail

{π} `Θ,Φred {π};Fail
(STOP0)

matches
(
π, (Θ,Φ), {(P, π′,Fail)}

)
{π} ∪ P `Θ,Φred {π} ∪ P ;Fail

(STOP)

Figure 10: Context Reduction

An empty constraint set reduces to itself (RED0). Rule

(CONJ) specifies that constraint set simplification works,

10 Rodrigo Ribeiro, Carlos Camarão

unlike constraint set satisfiability, by performing a union

of the result of simplifying each constraint in the con-

straint set, separately.

To see that a rule similar to (CONJ) cannot be used in

the case of constraint set satisfiability, consider a simple

example, of satisfiability of P = {C a,D a} in Θ =

{CInt , CBool , DInt , DChar}. The results of computing

satisfiability of P yields a single substitution where a

maps to Int , not the union of computing satisfiability

for C a and D a separately.

Rule (INST) specifies that if there exists a constraint

axiom ∀α. P ⇒ C τ , such that C τ matches with an

input constraint π, then π reduces to any constraint

set Q that P reduces to.

Rules (STOP0) and (STOP) deal with failure due to up-

dating of the constraint-head-value function.

4 Semantics

A type class declaration defines overloaded names, also

called class members, with corresponding types, and an

instance declaration gives a value for each class mem-

ber, referred to as a member value (sometimes also re-

ferred to in the literature as a “member function”).

The semantics of core Haskell, given in Figure 11,

is based on the application of (so-called) dictionaries

to overloaded names a standard core Haskell semantics

[15,12,7]. A dictionary is a tuple that corresponds to

an instance declaration, and contains values that corre-

spond to the definitions given in the instance declara-

tion for each class member. A dictionary of a superclass

contains also a pointer to a dictionary of each of its sub-
classes, but the treatment of superclasses is standard

and is omitted in this paper (see e.g. [12,7,6]).

Figure 11 defines the semantics of core Haskell by

induction on type system rules, with greatest instance-

types of variables explicitly annotated, that is, typing

formulas for variables have the form Γ ` x::φ where φ

is the greatest instance-type of this occurrence of x in

typing context Γ (cf. Definition 1). The translation of

the types of expressions are also defined in Figure 11.

For each class declaration class P ⇒ α where x ::

τ , a sequence of selection functions is generated, one for

each overloaded name in x. The selection function cor-

responding to xi simply selects the i-th component of

the tuple parameter (...,xi,...) (if n = 1, selection

is done by the identity function).

For example, class Eq generates a pair of selection

functions (==) and (/=), defined as equal to fst and

snd . Module scope visibility rules of these generated

names are not considered in this paper. See also Exam-

ple 11 below.

Let P denote a sequence of constraints in P in a

standard, say lexicographical order.

Each instance declaration instance P ⇒ π where

x = e of a class C generates a dictionary dπ. Each

component in dπ is a function that takes one dictionary

for each constraint in the (possibly empty) sequence P

and yields the translation of ei, the value bound by xi
in the instance declaration. The instance declaration

makes values η(Sπ) and η(xi, Sτi) to be equal to dπ,

for all substitutions S, where τi is the simple type in

the type of xi.

Let η†(P 7→ v) be equal to η[π1 7→ v1, . . . , πn 7→ vn],

where P = {π1, . . . , πn}.
vSeq(P) denotes a sequence of fresh variables vi, one

for each πi in the sequence P .

mguI is a functional counterpart of the most general

unifier relation (mgu).

We have that η(x, P ⇒ τ, Γ) gives the semantics of

possibly overloaded name x, with instance-type P ⇒ τ

and quantified type σ; η is overloaded to be used also

on unqualified constraints (as in η(π)) and to yield dic-

tionaries (as in η(x, τ)). In the translation, x represents

a selection function, η(x, τ) a dictionary, and w a se-

quence of arguments of the selected function, where ar-

guments are themselves dictionaries:

η(x, P ⇒ τ, Γ) =

{
x if P0 = ∅
x η(x, τ) w otherwise

where:∀α. P0 ⇒ τ0 = Γ (x),

S = mguI(τ, τ0),

π1 . . . πn = P0,

for i = 1, . . . , n : vi = η(πi),

wi =

{
vi if πi ∈ P
η(Sπi) otherwise

We have:

Theorem 2 For any derivations ∆,∆′ of typing for-

mulas Γ ` e : φ and Γ ′ ` e : φ, respectively, where Γ

and Γ ′ give the same type to every x free in e, we have

[[Γ ` e : φ]]η = [[Γ ′ ` e : φ]]η

where the meanings are defined using ∆ and ∆′, respec-

tively.

Proof Since Γ and Γ ′ give the same type to every x

free in e and the type system rules are syntax-directed,

∆ and ∆′ are the same.

Consider the following Haskell program extract:

Example 11

Ambiguity and Context-dependent Overloading 11

(x : σ) ∈ Γ
[[Γ ` x::P ⇒ τ]]η = η(x, P ⇒ τ, Γ) : τ

(VAR)

[[Γ, x : α ` e : (P ⇒ τ, S)]]η = e : τ α fresh τ ′ = Sα

[[Γ ` λx. e : (P ⇒ τ ′ → τ, S)]]η = λx. e : τ ′ → τ
(ABS)

[[Γ ` e1 : (P1 ⇒ τ1, S1)]]η = e1 : Sτ1
[[S1Γ ` e2 : (P2 ⇒ τ2, S2)]]η = e2 : Sτ2
mguI(S2τ1 = τ2 → α, S′) α fresh

S = S′ ◦ S2 ◦ S1, τ = Sα, V = tv(τ)
P = SP1 ⊕V SP2, P |∗V >>Θ Q

Pu = P − P |∗V Pu >>Θ Qu Qu = ∅
[[Γ ` e1 e2 : (Q⇒ τ, S)]]η = e1 e2 : τ

(APP)

ρ = P ⇒ τ
[[Γ ` e1 : (P1 ⇒ τ1, S1)]]η = e1:τ1

[[S1Γ, x :σ ` e2 : (P ⇒ τ, S)]]η′ = e2:τ
gen(σ, P1 ⇒ τ1, tv(S1Γ)), v = vSeq(P1)

gen(σ′, P ⇒ τ, tv(S(S1Γ))), η′ = η † (P1 7→ v)

[[Γ ` let x = e1 in e2 : ρ]]η = let x = e1 in λv. e2 : τ
(LET)

Figure 11: Core Haskell Semantics

class TEq a where

teq:: a → a → (Bool,String)

instance TEq Int where

teq i i′ = (i==i′,show i ++ " " ++ show i′)

instance (TEq a, Show a) ⇒ TEq [a] where

teq [] [] = (True,"")

teq (a:x) (b:y) = let (ab,sab) = teq a b

(xy,sxy) = teq x y

in (ab && xy, sab ++ sxy)

teq = (False,"")

teqww x=(teq [[x]],teq([1,2,3]::[Int])) --(1)

The translation of the first occurrence of teq in line

(1) above is equal to teq dTEqLv1v2, where teq ’s transla-

tion is the identity function, teqL is a function that re-

ceives the two dictionary arguments v1 and v2 passed to

teqww and yields the translation of function teq for lists

defined above. The translation is given with respect to

environment η0†(P 7→ v), where P = {Show a,TEq a},
v is the sequence v1 v2, and η0 is such that η0(teq, τ) =

dTEqL, where τ = [[a]]→ [[a]]→(Bool ,String), and

dTEqL is a dictionary with just one component teqL.

We have also that η0(TEq Int) is equal to a dictio-

nary with just one member (say, dTEqInt), and similarly

for η0(Show Int). The translation of the second occur-

rence of teq in line (1) above is equal to:

teq dTEqL dTEqInt dShowInt

Such use of dictionaries and the ensuing selection of

member values at run-time can be avoided by passing

values that correspond to overloaded names that are

in fact used. A common case is that of a list equality

function, that can receive an equality function for list

elements, instead of a dictionary containing also an un-

used inequality function. Passing a dictionary to select

at run-time the used equality function is unnecessary

and inefficient. Full laziness and common subexpression

elimination are techniques used to avoid repeated con-

struction of dictionaries at run-time [12,6]. This and

related implementation issues are however outside of

the scope of this paper and are left for further work

(see also [17,9]).

Note that constraints on types of expressions are

considered in the semantics only in the cases of poly-

morphic and constrained overloaded variables. Consider

for example expression eqStar given by:

let eq = λx. λy. (==) x y in eq ’*’

in a context where (==) has type Eq a ⇒ a → a →
Bool (we have not written a simpler expression because

we want to contrast the semantics of (==) with those

of expressions (==) x and (==) x y); the translation of

eqStar is given by:

let eq = λv. λx. λy. (==) v x y in eq dictEqChar ’*’

We have that (==) dictEqChar (as well as eq dictE-

qChar) returns a primitive equality function for charac-

ters, say primEqChar . Expression (==) is itself a func-

tion that takes a dictionary of type t and returns the

equality function from that dictionary, of type t →
t → Bool . The translation of each occurrence of (==)

passes a pertinent dictionary value to (==) so that the

type obtained is the expected type for an equality func-

tion on values of type t. Both expressions (==) x and

(==) x y have also constrained types, but a dictionary

is passed only in the case of (==). The semantics of

an expression with a constrained type where the set

of constraints is non-empty only considers this set of

constraints if the expression is an overloaded variable;

otherwise constraints are disregarded in the semantics.

Furthermore, since each occurrence of an overloaded

variable has a translation that is the application of per-

tinent dictionary values to that variable, translation of

types with constraints are never input or output values

of the translation function (see Figure 11).

Type soundness follows directly from the fact that

if [[Γ ` e : P ⇒ τ]]η = e : τ holds or, if e is a variable,

if [[Γ ` x :: P ⇒ τ]]η = e : τ holds, then Γ ′ ` e : τ

is derivable, where Γ ′ is appropriately defined so as to

remove overloading-related data from Γ . This can be

done by creating dictionaries and selection functions

as described above, and inserting corresponding type

assumptions in Γ ′.

12 Rodrigo Ribeiro, Carlos Camarão

Type soundness is obtained as a result of disallowing

all ambiguous expressions and all expressions involving

unsatisfiability in the use of overloaded names. For ex-

ample, letting e0 ≡ (λx -> show(read x)), we would

not have a derivation of Γ ′ ` e0 : String → String cor-

responding to Γ ` e0 : String → String if Γ ′ ` dReadt :

String → t is not derivable, which would happen if t

is a fresh type variable or t can be more than one sim-

ple type. In other words, Γ ′ ` dReadt : String → t is

derivable if and only if t is a unique simple type.

5 Conclusion

This paper discusses ambiguity in the context of lan-

guages that support context-dependent overloading, su-

ch as Haskell.

A type system is presented that does not follow the

Hindley-Milner approach of providing context-free type

instantiation, as usually done in type systems for such

languages. As a consequence, ambiguous expressions

can be considered to be not well-typed, in conformance

with type inference algorithms.

The type system does not allow context-free type

instantiation and allows only a single type to be de-

rived for an expression, in a given typing context, mak-

ing it look closer and easier to be converted into a

type inference algorithm. There is no notion of princi-

pal type (and thus no notion of “principal translation”

of a term), in a given typing context. Related notions of

instance type and most specific instance type for each

occurrence of an expression, dependent on program con-

texts, are instead defined and used in the paper.

A semantics is defined by induction on the type sys-

tem rules, for which coherence is trivial. Type sound-

ness is obtained as a result of disallowing all ambiguous

expressions and all expressions involving unsatisfiabil-

ity in the use of overloaded names.

A standard definition of ambiguity is followed in the

support for context-dependent overloading, where sat-

isfiability is tested — i.e. “the world is closed” — if only

if overloading is resolved (or should have been resolved),

that is, if and only if there exist unreachable variables in

the constraints on types of expressions. Nowadays sat-

isfiability is tested in Haskell, in the presence of multi-

parameter type classes, only upon the presence of func-

tional dependencies or an alternative mechanism that

specifies conditions for closing the world, and that may

happen when there exist or not unreachable type vari-

ables in constraints. The satisfiability trigger condition

is then given automatically, by the existence of unreach-

able variables in constraints, and does not need to be

specified by programmers, using an extra mechanism.

References

1. B. Pierce: Types and Programming Languages. MIT
Press (2002)

2. C. Camarão and L. Figueiredo: Type Inference for Over-
loading without Restrictions, Declarations or Annota-
tions. In: Proc. 4 th Fuji International Symp. on Func-
tional and Logic Programming (FLOPS’99), pp. 37–52.
Springer-Verlag, LNCS 1722 (1999)

3. C. Camarão, R. Ribeiro, L. Figueiredo and C. Vas-
concellos: A Solution to Haskell’s Multi-Parameter
Type Class Dilemma. In: Proc. 13 th Brazilian
Symp. on Programming Languages (SBLP’2009), pp.
5–18 (2009). http://www.dcc.ufmg.br/~camarao/-

CT/solution-to-mptc-dilemma.pdf

4. Chakravarty, M., Keller, G., Jones, S.: Associated Type
Synonyms. In: Proc. 10 th ACM SIGPLAN Interna-
tional Conference on Functional Programming, pp. 241–
253 (2005)

5. Eder, E.: Properties of Substitutions and Unification.
Journal of Symbolic Computation 1, 31–46 (1985)

6. Faxén, K.: A static semantics for Haskell. Journal of
Functional Programming 12, 295–357 (2002)

7. Hall, C., Hammond, K., Jones, S., Wadler, P.: Type
Classes in Haskell. ACM Transactions on Programming
Languages and Systems 18(2), 109–138 (1996)

8. J. Mitchell: Foundations of Programming Languages.
MIT Press (1996)

9. Jones, M.: Dictionary-free Overloading by Partial Evalu-
ation. In: ACM SIGPLAN Workshop on Partial Evalua-
tion and Semantics-Based Program Manipulation (1994)

10. K. Faxén: Haskell and Principal Types. In: Proc. 2003
ACM SIGPLAN Haskell Workshop, pp. 88–97 (2003)

11. M. Chakravarty, G. Keller, S.P. Jones and S. Marlow: As-
sociated types with class. In: Proc. ACM Symp. on Prin-
ciples of Prog. Languages (POPL’05), pp. 1–13 (2005)

12. M. Jones: Qualified Types: Theory and Practice. Ph.D.
thesis, Distinguished Dissertations in Computer Science.
Cambridge Univ. Press (1994)

13. M. Jones: Simplifying and Improving Qualified Types. In:
Proc. ACM Conf. on Functional Prog. and Comp. Archi-
tecture (FPCA’95), pp. 160–169 (1995)

14. P. Stuckey and M. Sulzmann: A Theory of Overload-
ing. ACM Trans. on Prog. Lang. and Systems (TOPLAS)
27(6), 1216–1269 (2005)

15. P. Wadler and S. Blott: How to make ad-hoc polymor-
phism less ad hoc. In: Proc. 16 th ACM Symp. on Prin-
ciples of Prog. Lang. (POPL’89), pp. 60–76. ACM Press
(1989)

16. Palamidessi, C.: Algebraic Properties of Idempotent Sub-
stitutions. Lecture Notes in Computer Science 443, 386–
399 (1990)

17. Peterson, J., Jones, M.: Implementing type classes.
Proc. ACM Conf. on Programming Language Design and
Implementation pp. 227–236 (1993). SIGPLAN Notices
28(6)

18. Robinson, J.: A machine-oriented logic based on the res-
olution principle. Journal of the ACM 12, 32–41 (1965)

19. Smith, G.: Polymorphic type inference for languages with
overloading and subtyping. Ph.D. thesis, Cornell Univ.
(1991)

20. S.P. Jones and others: GHC — The Glas-
gow Haskell Compiler 7.0.4 User’s Manual.
http://www.haskell.org/ghc/ (2011)

21. S.P. Jones and others: GHC — The Glasgow Haskell
Compiler. http://www.haskell.org/ghc/ (2012)

Ambiguity and Context-dependent Overloading 13

22. Vytiniotis, D., Jones, S., Schrijvers, T., Sulzmann, M.:
OutsideIn(X): Modular Type Inference with Local As-
sumptions. Journal of Functional Programming 21(4–5),
333–412 (2011)

