
Property-Based Testing for Lambda Expressions Semantics in
Featherweight Java

Samuel da Silva Feitosa

PPGC - UFPel

samuel.feitosa@inf.ufpel.edu.br

Rodrigo Geraldo Ribeiro

PPGCC - UFOP

rodrigo@decsi.ufop.br

Andre Rauber Du Bois

PPGC - UFPel

dubois@inf.ufpel.edu.br

Abstract
The release of Java 8 represents one of the most significant up-

dates to the Java language since its inception. The addition of λ-
expressions allows the treatment of code as data in a compact way,

improving the language expressivity. This paper addresses the prob-

lem of defining rigorous semantics for new features of Java, such

as λ-expressions and default methods, using Featherweight Java

(FJ), a well-known object-oriented calculus. To accomplish this task,

we embed the formalization of these new features in two different

semantics, checking them for safety properties using QuickCheck,

a property-based testing library for Haskell.

CCS Concepts
• Theory of computation → Operational semantics; • Soft-
ware engineering→ Formal software verification;

Keywords
Property-based testing, λ-expressions, Featherweight Java

ACM Reference Format:
Samuel da Silva Feitosa, Rodrigo Geraldo Ribeiro, and Andre Rauber Du

Bois. 1997. Property-Based Testing for Lambda Expressions Semantics in

Featherweight Java. In Proceedings of Brazilian Symposium on Programming
Languages (SBLP’2018). ACM, New York, NY, USA, 8 pages. https://doi.org/

10.475/123_4

1 Introduction
Nowadays, Java is one of the most popular programming lan-

guages [19]. It is a general-purpose, concurrent, strongly typed,

class-based object-oriented language. Since its release in 1995 by

Sun Microsystems, and acquisition by Oracle Corporation, Java has

been evolving over time, adding features and programming facilities

in its new versions. In a recent major release of Java, new features

such as lambda expressions, method references, and functional in-

terfaces, were added to the core language, offering a programming

model that fuses the object-oriented and functional paradigms [11].

Considering the growth in adoption of the Java language for large

projects, many applications have reached a level of complexity for

which testing, code reviews, and human inspection are no longer

sufficient quality-assurance guarantees. This problem increases the

need for tools that employ static analysis techniques, aiming to

explore all possibilities in an application, in order to guarantee

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SBLP’2018, Sep. 2018, São Carlos, SP, Brazil
© 2018 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06. . . $15.00

https://doi.org/10.475/123_4

the absence of unexpected behaviors [8]. Normally, this task is

hard to be accomplished, however it is possible to model formal

subsets of the problem applying a certain degree of abstraction,

using only properties of interest, facilitating the understanding and

also allowing the use of automatic tools.

Therefore, an important research area concerns the formal se-

mantics of languages and type-system specification, which enables

the verification of a problem consistency, allowing formal proofs,

and establishing program properties. Besides, solutions can be ma-

chine checked providing a degree of confidence that cannot be

reached using informal approaches.

In this context, this work provides the description of two differ-

ent semantics for λ-expressions and default methods, extending

Featherweight Java [12], a small core calculus with a rigorous se-

mantic definition of the main core aspects of Java. We work on

two different semantics because λ-expressions types are lost dur-
ing reduction steps [2], and we want to explore different models

to formalize it. One of these models uses type elaboration [18] to

annotate all the λ-expression types during the type checking phase,

differing from previous works, producing new expressions in each

rule, releasing the evaluation rules to deal with types. The other

can be seen as a lazy version of the first, which annotates types at

the moment they are needed (simplifying the calculus presented

in [2]), making the evaluation independent of type-checking.

The motivations for using FJ as a starting point is twofold: first,

it is very compact, so we can focus on the essential aspects of

our extensions. The minimal syntax, typing rules, and operational

semantics fit well for studying the new aspects of Java 8. Second, we

are interested in the formal definition of FJ, which allows modeling

and proving properties of programs. The choice for using property-

based testing allows the experimentation with different semantic

designs and implementations, exposing and enabling the correction

of bugs in early steps of the development, providing a high-degree

of confidence that the semantics is working before formalizing it

in a proof assistant.

Specifically, we made the following contributions:

• We defined two small-step reduction and typing rules for

the Java 8 features: λ-expressions and default methods. In

addition, we presented informal (non-mechanized) proofs

for type soundness, and we implemented interpreters
1
for

each semantics.

• We defined a type-directed heuristic for constructing random

programs. We conjectured that our heuristic is sound with

respect to FJ type system, i.e. it generates only well-typed

programs.

1
The source-code for our interpreters and the test suite is available at: https://github.

com/fjpub/fj-lam.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://github.com/fjpub/fj-lam
https://github.com/fjpub/fj-lam

SBLP’2018, Sep. 2018, São Carlos, SP, Brazil Feitosa, Ribeiro, and Du Bois

• We used QuickCheck to verify the following properties: our

program generators are only producing well-formed class

tables and well-typed expressions; the type soundness prop-

erties hold for the proposed semantics; and the two semantics

are equivalent.

The remainder of this text is organized as follows: Section 2

summarizes the FJ proposal. Section 3 presents the operational

semantics for λ-expressions and default methods. Section 4 shows

how we modeled the program generators and presents the results

of testing our semantics with QuickCheck. Section 5 discusses some

related work. Finally, we present the final remarks in Section 6.

2 Featherweight Java
Featherweight Java (FJ) [12] is a minimal core calculus for Java,

in the sense that as many features of Java as possible are omitted,

while maintaining the essential flavor of the language and its type

system. However, this fragment is large enough to include many

useful programs. A program in FJ consists of the declaration of a

set of classes and an expression to be evaluated, that corresponds

to the Java’s main method.

FJ is to Java what λ-calculus is to Haskell. It offers similar op-

erations, providing classes, methods, attributes, inheritance and

dynamic casts with semantics close to Java’s. The Featherweight

Java project favors simplicity over expressivity and offers only five

ways to create terms: object creation, method invocation, attribute

access, casting and variables [12]. The following example shows

how classes can be modeled in FJ. There are three classes, A, B, and
Pair, with constructor and method declarations.

class A extends Object {

A() { super (); }

}

class B extends Object {

B() { super (); }

}

class Pair extends Object {

Object fst;

Object snd;

Pair(X fst , Y snd) {

super ();

this.fst=fst;

this.snd=snd;

}

Pair setfst(Object newfst) {

return new Pair(newfst , this.snd);

}

}

In the following example we can see two different expressions:

new A(), new B(), and new Pair(...) are object constructors, and
.setfst(...) refers to a method invocation.

new Pair(new A(),new B()).setfst(new B());

FJ semantics provides a purely functional view without side ef-

fects. In other words, attributes inmemory are not affected by object

operations. Furthermore, interfaces, overloading, call to base class

methods, null pointers, base types, abstract methods, statements,

access control, and exceptions are not present in the language [12].

As the language does not allow side effects, it is possible to formal-

ize the evaluation just using the FJ syntax, without the need for

auxiliary mechanisms to model the heap. The formalization of FJ

augmented with the semantics of λ-expressions, appear in the next

section.

3 The Semantics for λ-Expressions and Default
Methods

In the release of JavaDevelopment Kit version 8 (JDK 8), λ-expressions
and default methods were added in the kernel of the Java language.

The λ-expressions enable the programmer to treat functions as a

method argument, or code as data. They provide a clear and concise

way to instantiate one method interface’s using an expression and

facilitates programming in a functional style. Particularly, they are

anonymous methods (methods without names) used to implement

a method defined by a functional interface
2
. Default methods allow

new functionality to be added to the interfaces of libraries assuring

binary compatibility with older versions.

In order to study rigorously object-oriented languages such as

Java, C++ or C#, a common practice is to define lightweight frag-

ments, which are sufficiently small to facilitate formal proofs of

key properties. This section addresses the problem of defining a

rigorous semantics for λ-expressions and default methods, by ex-

tending the FJ calculus adding the syntax and semantics for these

features. This technique is well known and has already been used

in several projects to study interesting features and properties re-

lated to object-oriented languages [1–3, 9, 14, 16]. As we have

defined two different approaches for dealing with λ-expressions
and default methods, at the first moment we present the syntax

and auxiliary definitions, which are common for both approaches.

Then, we present the first version, where we use type elabora-

tion [18] to annotate the types for λ-expressions producing, as a
result, an annotated program. After that, we show the second ap-

proach, where both type system and reduction rules annotate types

for λ-expressions whenever it is necessary.

3.1 Syntax and Auxiliary Functions
The abstract syntax of FJ augmented with interfaces, λ-expressions
and default methods is given in Figure 1, where T represents type
declarations, L and P express classes and interfaces, K defines con-
structors, S stands for signatures, M for methods, and e refers to

the possible expressions. The metavariables A, B, C, D, and E can be

used to represent class names, F, G, H, I, and J range over interface

names, T, U, and V represent generic names for classes or interfaces,

f and g range over field names, m ranges over method names, x and
y range over variables, d and e range over expressions. Throughout

this paper, we write T as shorthand for a possibly empty sequence

T1, ...,Tn (similarly forC , f , x , etc.). An empty sequence is denoted

by •, and the length of a sequence x̄ is written #x̄. We use Γ to

represent an environment, which is a finite mapping from variables

to types, written x : T , and we let Γ(x) denote the type T such

that x : T ∈ Γ. We slightly abuse notation by using set operators on

sequences.
The differences from original FJ [12] were given firstly by the

introduction of interface declarations, where interface I extends

I { S; default M } introduces an interface named I with a list

of super-interfaces I . The new interface defines a list of signatures

2
A functional interface is an interface that contains one and only one abstract method.

Property-Based Testing for Lambda Expressions Semantics in Featherweight Java SBLP’2018, Sep. 2018, São Carlos, SP, Brazil

Syntax

T ::= type definitions

C | I
L ::= class declarations

class C extends C implements I {T f ;K M}

P ::= interface declarations

interface I extends I {S ; defaultM}

K ::= constructor declarations

C(T f) {super(f); this. f = f ; }

S ::= signature declarations

T m(T x)
M ::= method declarations

S { return e; }

e ::= expressions

x variable

e . f field access

e .m(e) method invocation

new C(e) object creation

(T) e cast

(T x) → e λ-expression

Figure 1: Syntactic definitions for FJ augmented with λ-
expressions.

S and a list of default methods default M . For completeness, since

Java’s semantics allows a class to implement a list of interfaces, we

changed the class declarations accordingly. Second, the signature
declarations were added representing prototypes for abstract and

concrete methods, where T m(T x) introduces a method named m,
a return type T , and parameters x of types T . As a consequence of
this, the method declarations were also modified. Lastly, we added

the constructor for λ-expressions, where (T x) → e represents an

anonymous function, which has a list of arguments with type T
and names x , and a body expressions e .

The class table was also modified to accept both class and inter-

face declarations. Therefore, a class table CT is a mapping from

class or interface names, to class or interface declarations, L or P
respectively. Considering the addition of interfaces, the subtyping
relation had to be extended. Following the standard, we write T

<: U when T is a subtype of U , and T <: U when T is subtype of

all the occurrences of U1, ...,Un . Formally, the rules for subtyping

were defined in Figure 2.

As in FJ, we need some auxiliary definitions for working in the

typing and reduction rules. First, we add two rules to obtain abstract

and concrete methods, respectively, which are given in Figure 3.

To be considered abstract, a method should have no implemen-

tation. Thus, the function abs-methods returns the left union ⊎ of

signatures contained in base classes or interfaces, removing those

that were implemented by the current class. A concrete method

is defined with its body implementation, so the function methods
returns the left union ⊎ of all methods contained in the current

class, the base class and the default methods contained in the inter-

face list. For both functions, it is important to note the order of the

union operator, for cases when classes or interfaces have methods

with the same names.

T <: T

T <: U U <: V

T <: V

CT(C) = class C extends D implements I { ... }

C <: D C <: I

CT(I) = interface I extends I { ... }

I <: I

Figure 2: Subtyping relation between classes and interfaces.

Abstract method lookup

abs-methods(Object) = •

CT (C) = class C extends D implements I {T f ; KM}

M = S { return e; }

abs-methods(D) = S1

abs-methods(I) = S2

abs-methods(C) = S1 ⊎ S2 − S

CT (I) = interface I extends I {S ; defaultM}

abs-methods(I) = S1

abs-methods(I) = S ⊎ S1

Concrete method lookup

methods(Object) = •

CT (C) = class C extends D implements I {T f ; KM}

methods(D) =M1

methods(I) =M2

methods(C) =M ⊎M1 ⊎M2

CT (I) = interface I extends I {S ; defaultM}

methods(I) =M1

methods(I) =M ⊎M1

Figure 3: Abstract and concrete method lookup.

Second, we adapted the auxiliary definitions when dealing with

field, method type and body lookup
3
. The expected result when

calling these functions is similar to those presented in original FJ.

Last, we added a function to annotate λ-expressions with their

types. This is important since a λ-expression is written without

a type. Instead, the compiler is responsible for inferring the type

of each λ-expression, by using the type expected in the context

in which the expression appears. This type is called target type.
According to Java’s documentation [11], a λ-expression can appear

in a field of a constructor, in an actual parameter on a method call,

as a return term of a method body or another λ-expression, and also
enclosed by a cast. For example, the target type of a λ-expression
that occurs as the actual parameter is the type of the parameter in

3
For the lack of space, we omitted these rules from the text, however they can be found

in p. 402 of the original FJ paper [12].

SBLP’2018, Sep. 2018, São Carlos, SP, Brazil Feitosa, Ribeiro, and Du Bois

the method declaration. However, applying small-step reductions,

the target type of the λ-expression is not preserved, as we show in

the next example. Let’s suppose a class C, with an attribute f which
type is a functional interface I.

(new C((Object x) → x)).f −→ (Object x) → x

This example shows a reduction step considering the access to

attribute f, of an object creation new C((Object x) → x), where
the constructor receives a λ-expression as parameter, which target

type is represented by the functional interface I. The orignal rule
R-Field (p. 407 of [12]) reduces the field access to the value of the

actual parameter f, here represented by the λ-expression ((Object
x) → x). As can be noted, after the reduction step, there is no

more a target type, and a λ-expression without a type cannot be

invoked, justifying the need of our λmark function given in Figure

4. The same occurs whenever a λ-expression appears in other kinds

of expressions.

e0 is (T x) → e

λmark(e0,T) = (T) e0

e0 is not (T x) → e

λmark(e0,T) = e0

Figure 4: Annotating types for λ-expressions.

The function λmark is very simple. Its role is to add a cast defini-
tion if and only if a λ-expression appears in the source-code. We

chose to use casts to annotate λ-expressions to avoid extra syntactic
definitions. It is important to note that this extra cast is a runtime

annotation, which will be invisible to the programmer during code

development.

3.2 First Approach
In this section, we show the typing and reduction rules considering

that the type system is the only responsible for annotating types

for λ-expressions by using the type elaboration technique [18]. As

result, each typing rule of FJ should produce a new expression,

where the λ-expressions are decorated with a cast indicating their

types.

The typing rules for expressions, method declarations, class

declarations, and interface declarations are shown in Figure 5. A

difference from original FJ is that the typing judgment for expres-

sions results in addition to the type a new (possibly annotated)

expression with the form Γ ⊢ e : ⟨T , e ′⟩. This adaptation was made

so that the type system produced a new expression with the λ-
expressions annotated with a cast. We abbreviate typing judgments

and function calls the same way as in previous sections.

The typing rules for expressions T-Var, T-Field, T-DCast, T-SCast
are very close to FJ. The rule T-Invk was changed to call the func-

tion λmark on the actual parameters e when a method invocation

occurs before type checking, assuring that if a λ-expression ap-

pears, it will be annotated with the respective formal parameter in

type list U , producing a new expression list e ′. Then, the typing
judgment is applied to that expression list, resulting in a list of

types T and a list of terms e ′′. This recursive processing is neces-
sary to guarantee that subexpressions are correctly typed. As the

expression e0 can also contain a λ-expression, the typing judgment

for it produces another term e ′
0
. The rules T-New and T-UCast are

similar to T-Invk in the sense that T-New applies λmark and typing
judgments on the actual parameters, and T-UCast applies λmark
and typing judgment on the expression e0. The typing rule T-Lam
shows how a λ-expression is typed. Firstly, we can note that the

annotated cast for the λ-expression should be an interface I . Then,
a call to the function abs-methods checks if the interface has only

one abstract method, which indicates that it is a functional inter-

face. Secondly, we apply λmark on the λ-expression body e with
the return type T of the abstract method, once it can be another

λ-expression, producing a new term e ′. Lastly, the typing judgment

is applied to the λ-expression body with the formal parameters of

that λ-expression added to context Γ, resulting in a new body e ′′.
This guarantees subexpressions are correctly typed.

Considering that the body of a method is represented by an ex-

pression, consequently, we can have λ-expressions inside methods.

This occurs in two ways in the context of FJ: the method returns

a λ-expression or a λ-expression occurs as a subexpression inside

the method body. Therefore, the method typing rule should, besides

its role in the original FJ, produce a new method instance con-

taining the possibly annotated body expression. We also adapted

the rules for using our previously defined functions methods and
abs-methods. The first step is to call λmark on the body expres-

sion e with the return type U , which produces the expression e ′.
Then the context Γ is augmented with the formal parameters and

the special variable this, where the typing judgment is applied

to expression e ′, producing a new expression e ′′. Thereafter, the
rule checks for subtyping and if the method being processed is

present in the class according to the class table. As result, we have

a method with the body expression modified. The class typing rule

checks if the class is well-formed, i.e., if the constructor was defined

considering the attributes of the current and the base classes, if all

methods are well-typed, and if there are no abstract methods since

FJ does not have abstract classes. When checking the methods, a

call for method typing results in modified methods M ′
, thus, the

result of processing class typing produces a modified class. The

interface typing rule is similar to class typing, except that interfaces
do not have attributes nor constructors, and it should have at least

one abstract method.

The added evaluation rules for our first approach are given in

Figure 6.

The three original rules of FJ (R-Field, R-Invk, and R-Cast)
were kept unchanged and so we omitted them. For dealing with

λ-expressions and default methods we added three rules. The reduc-

tion rule R-Default is applied when a method invocation happens

on an annotated λ-expression. Then, it gets the body of a method

m defined in an interface I through the function mbody. If this body
is defined, it performs the substitution of the formal parameters

by the actual ones, similarly what happens in the R-Invk rule. The

rule R-Lam is also applied when a method invocation happens on an

annotated λ-expression, whereas in this case, the mbody function is

not defined for methodm in the interface I . Therefore, it reduces to
the body of the λ-expression e with the formal parameters replaced

by the actual ones. The R-Cast-Lam is very close to R-Cast. When

a cast is used on an annotated λ-expression, it checks for subtyping
and results in the annotated λ-expression itself. For short, we also

omitted the congruence rules, which can be found in [12].

Property-Based Testing for Lambda Expressions Semantics in Featherweight Java SBLP’2018, Sep. 2018, São Carlos, SP, Brazil

Expression typing
Γ ⊢ x: T

Γ ⊢ x { ⟨T,x⟩
[T-Var]

Γ ⊢ e0 : ⟨C0,e
′
0
⟩ fields(C0) = T̄

¯
f

Γ ⊢ e0.fi { ⟨Ti ,e
′
0
.fi ⟩

[T-Field]

mtype(m, T0) = Ū→ T

Γ ⊢ e0: ⟨T0,e
′
0
⟩ λmark(ē, Ū) = e ′

Γ ⊢ e ′ : ⟨T̄,e ′′⟩ T̄ <: Ū

Γ ⊢ e0.m(ē){ ⟨T,e′
0
.m(e ′′)⟩

[T-Invk]

fields(C) = Ū
¯
f

λmark(ē, Ū) = e ′ Γ ⊢ e ′ : ⟨T̄,e ′′⟩ T̄ <: Ū

Γ ⊢ new C(ē){ ⟨C,new C(e ′′)⟩
[T-New]

abs-methods(I) = {T m(T̄ ȳ)} λmark(e,T) = e
′

x̄: T̄, Γ ⊢ e′ : ⟨U,e′′⟩ U <: T

Γ ⊢ (I) ((T̄ x̄)→ e){ ⟨I,(I) ((T̄ x̄)→ e
′′
)⟩

[T-Lam]

λmark(e0, T) = e
′
0

Γ ⊢ e′
0
: ⟨U,e′′

0
⟩ U <: T

Γ ⊢ (T) e0 { ⟨T,(T) e′′
0
⟩

[T-UCast]

Γ ⊢ e0 : ⟨U,e′
0
⟩ T <: U T , U

Γ ⊢ (T) e0 { ⟨T,(T) e′
0
⟩

[T-DCast]

Γ ⊢ e0 : ⟨U,e′
0
⟩ T ≮: U U ≮: T

stupid warning

Γ ⊢ (T) e0 { ⟨T,(T) e′
0
⟩

[T-SCast]

Method typing

λmark(e,U) = e
′

x̄: Ū, this: T ⊢ e′: ⟨V,e′′⟩ V <: U
U m(Ū x̄) { return e; } ∈ methods(T)

U m(Ū x̄) { return e; }{ ⟨OK,U m(Ū x̄) { return e
′′
; }⟩

Class typing

K = C(Ū ḡ, T̄
¯
f) { super(ḡ); this.

¯
f =

¯
f; }

fields(D) = Ū ḡ (M̄ OK in C) = ⟨OK,M ′⟩

abs-methods(C) = •

class C extends D implements Ī { T̄
¯
f; K M̄ }{

⟨OK,class C extends D implements Ī { T̄
¯
f; KM ′

}⟩

Interface typing

M̄ OK in I = ⟨OK,M ′⟩ abs-methods(I) , •

interface I extends Ī { S̄; default M }{

⟨OK,interface I extends Ī { S̄; default M′ }⟩

Figure 5: First approach: typing rules.mbody(m, I) = (ȳ, e0)

((I) ((Ū x̄)→ e)).m(ū) −→ [ȳ 7→ ū] e0

[R-Default]

((I) ((T̄ x̄)→ e)).m(ū) −→ [x̄ 7→ ū] e

[R-Lam]

I <: T

(T) ((I) ((T̄ x̄)→ e)) −→ (I) ((T̄ x̄)→ e)

[R-Cast-Lam]

Figure 6: First approach: New reduction rules.

Analogously to FJ, we prove subject reduction and progress to

demonstrate type soundness for the Java 8 features of λ-expressions
and default methods.

Theorem 3.1 (Subject reduction). If Γ ⊢ e : T and e → e ′,
then Γ ⊢ e ′ : T ′ for some T ′ <: T .

Proof. By induction on the reduction e → e ′, with a case anal-

ysis on the reduction rule used. It extends the original proof [12] of

the corresponding theorem for FJ with the following cases:

Case R-Default. e = ((I)((T̄ x̄) → e)).m(ū), mbody(m, I)
= (ȳ,e0), and by rules T-Invk and T-Lam, we have: Γ ⊢ ((I)((T̄
x̄) → e)): I, mtype(m,I) = Ū → U, Γ ⊢ ū : T̄, and T̄ <: Ū.
Furthermore, e′ = [ū 7→ ȳ]e0 and by the Lemma A.1.2

4
, Γ ⊢ e′

= [ū 7→ ȳ]e0 : T for some T <: U.
Case R-Lam. e = ((I)((T̄ x̄) → e)).m(ū), and by rules

T-Invk and T-Lam, we have: Γ ⊢ ((I)((T̄ x̄) → e)): I,mtype(m,I)

4
The Lemma A.1.2 states that “terms substitution preserves typing” and can be found

in p. 426 of FJ paper [12].

= Ū → U, Γ ⊢ ū : T̄, and T̄ <: Ū. Furthermore, e′ = [ū 7→ x̄]e
and by the Lemma A.1.2, Γ ⊢ e′ = [ū 7→ x̄]e : T for some T <:
U.

Case R-Cast-Lam. e = (T)((I)((T̄ x̄) → e)), I <: T, and
by rules T-UCast and T-Lam, we have: Γ ⊢ ((I)((T̄ x̄) → e)):
I, and (T)((I)((T̄ x̄) → e)): T. Furthermore, e′ = (I)((T̄ x̄)
→ e), finishing the case since I <: T. □

Theorem 3.2 (Progress). Suppose e is a well-typed expression.
(1) If e includes ((I)((T̄ x̄) → e)).m(ū) as a subexpression,

and mbody(m, I) = (ȳ,e0), then #ȳ = #ū for some ȳ and e0.
(2) If e includes ((I)((T̄ x̄) → e)).m(ū) as a subexpression,

and mbody(m, I) is not defined, then #x̄ = #ū for some ȳ and e.

Proof. The proof is based on the analysis of all well-typed ex-

pressions, extending previous proofs [12], which can be reduced

to the above cases, to conclude that either it is in normal form or

it can be further reduced to obtain a normal form. There are two

possible normal forms. They are:

- new C(v̄) Object as in FJ.

- (I)((T̄ x̄) → e) A well-typed λ-expression. □

Theorem 3.3 (Type Soundness). If ∅ ⊢ e : T and e →∗ e ′ with
e ′ being a normal form, then e ′ is a value w with ∅ ⊢ w : S and
∅ ⊢ S <: T .

Proof. Immediate from above theorems. □

SBLP’2018, Sep. 2018, São Carlos, SP, Brazil Feitosa, Ribeiro, and Du Bois

3.3 Second Approach
This section discusses the typing and reduction rules for λ-expressions
and default methods in a different way. Here, the type system

uses the function λmark when the current expression contains a

λ-expression and does not produce a new expression. This annota-

tion is used during the type checking process and is lost after that.

Thus, during the evaluation, it is necessary to call λmark again to

annotate the types of expressions according to their contexts.

Figure 7 shows on the left the typing rules and on the right

the evaluation rules for this approach. There we show only the

rules that differ from the original FJ [12], hence, on the expression

typing we omit the rules T-Var, T-Field, T-DCast, and T-SCast.
In the rule T-Invk we can note a call for λmark using the formal

parameters types, obtained by the function mtype, and the actual

parameters e . The purpose of this is to annotate the types when a

λ-expression is passed as an argument on a method invocation. The

same is performed on the T-New rule, considering the parameters

of a constructor, which uses the field types as target types for the

λ-expression. The rule T-Lam is similar to the first approach, except

here it does not produce a new expression. This rule checks if I
is a functional interface, applies λmark in the body expression e
with the return type T of the method m. This is done because e can
also be a λ-expression. In the end, it verifies if the resulting type of

the body is a subtype of the return type of the method m. Finally,
in the rule T-UCast the function λmark is used in the case e0 is a

λ-expression.
The rules for class typing and interface typing were also omitted

from the text, once they are mere adaptations of FJ, and very close to

the previous section. The difference is that here they do not produce

new class or interface instances. The rule for method typing uses

the function λmark for the method body expression e , to annotate

in case it is a λ-expression. After that, it matches the resulting type

of the body with the method return type and checks if the current

method belongs to a certain class or interface.

For the evaluation rules, we omit the rule R-Cast, since it is the
same as FJ. When processing the rule R-Field it is necessary to

apply the function λmark in the resulting field, once it can represent
a λ-expression. The rule R-Invk applies the λmark twice. First, it is

applied to the actual parameters to annotated types in case some

parameter is a λ-expression. Second, it is applied to the resulting

expression, similarly to the R-Field rule. The rule R-Default is

very close to R-Invk, but in this case, the processing occurs with an

interface. The rule R-Lam refers to an invocation of a λ-expression.
It uses the function mtype to obtain types for the parameters and

return of methodm from interface I . Then λmark is used on the

parameters and in the body expression. The rule R-Cast-Lam is the
same as the first approach. In this approach, for space reasons, we

also omit the congruence rules and the soundness proofs.

4 Validation of Semantic Properties
After the presentation of language semantics and the sketches for

proofs of type soundness properties, we demonstrate howQuickCheck [5]

helps on testing our proposed semantics against these properties

using randomly generated high-level programs. For generating

random programs in the context of FJ, it is necessary to generate

instances of class tables and expressions to be evaluated. Further-

more, to test properties, it is necessary to define Haskell functions

in the format accepted by QuickCheck library
5
.

We adapted the approach of [17] for generating random pro-

grams considering that FJ has nominal instead structural types.

In this way, each typing rule is interpreted as a generation rule.

We started by producing the algorithm for generating expressions

adopting a goal-oriented procedure, which receives as input a class

table, an environment and the desired type for the expression being

generated. This type should represent a class or interface name

present in the class table, with the restriction that it should be in-

stantiable, i.e., or it is a class, or it represents a functional interface

to be filled with a λ-expression. Depending on the desired type,

a subset of the typing rules may be applicable. For that reason,

we prepare a list of candidate expressions for each typing rule,

considering what is defined on the class table.

Suppose a class table containing the three classes shown in Sec-

tion 2, an empty environment Γ, and that we want to generate an

expression of type Object. A typing rule can be formatted using ?
as a placeholder for that expression, as follows.Γ ⊢ ? : Object (1)

By looking at the class table, we can have candidates using the

rules T-Field, where both fields fst and snd of class Pair are of
type Object; T-New, which can be used to create a new instance

of Object; and T-UCast6 which can cast any class on class table,

since Object is the superclass of them. For example, consider the

algorithm to produce the candidate list for the rule T-Field. It
will lookup for classes containing attributes of type Object, which
results the fields of class Pair. Below we show another step during

the construction of a candidate expression.

Γ ⊢ ?1 : Pair

Γ ⊢ (?1).fst : Object
(2)

There, we can note the access to a field called fst of an expres-

sion which should have the type Pair. The generator is performed

recursively for each placeholder, using the QuickCheck sized func-
tion, until the expression is complete or depth bound exceeded. The

same process is applied to the others typing rules. Our algorithm

produces a list of candidate expressions for each typing rule. We

use the QuickCheck function oneof to select one random expres-

sion for each candidate list and we use oneof again to select one

of the remaining expressions. This way, we generate well-typed

expressions with the same probability distribution for each typing

rule.

A similar approach is defined to fill the class table with classes

and interfaces. For example, through the class typing rule (Figure

5) we have:

class ?1 extends ?2 implements ?3 { ?4; ?5 ?6 } (3)

Where ?1 refers to a new class name, not yet present in the class

table, ?2 is the base class, which is Object or a class contained in

the class table, ?3 is a possibly empty list of interfaces obtained from

the class table, ?4 is a list of already defined types and names for

attributes, ?5 is formatted according to the base class attributes and

the new ones defined in ?4, and ?6 is a list of randomly generated

5
Our technical report about random FJ program generation can be found at: https:

//github.com/fjpub/fj-lam/blob/master/tr.pdf.

6
The rules T-DCast and T-SCast are not used in expression generation since they can

produce cast unsafe expressions.

https://github.com/fjpub/fj-lam/blob/master/tr.pdf
https://github.com/fjpub/fj-lam/blob/master/tr.pdf

Property-Based Testing for Lambda Expressions Semantics in Featherweight Java SBLP’2018, Sep. 2018, São Carlos, SP, Brazil

Expression typing

mtype(m, T0) = Ū → T

Γ ⊢ e0: T0 λmark(ē, Ū) = e ′ Γ ⊢ e ′ : T̄ T̄ <: Ū

Γ ⊢ e0.m(ē) : T

[T-Invk]

fields(C) = Ū
¯
f

λmark(ē, Ū) = e ′ Γ ⊢ e ′ : T̄ T̄ <: Ū

Γ ⊢ new C(ē) : C

[T-New]

abs-methods(I) = {T m(T̄ ȳ)}

λmark(e,T) = e
′

x̄: T̄, Γ ⊢ e′ : U U <: T

Γ ⊢ (I) ((T̄ x̄)→ e) : I

[T-Lam]

λmark(e0, T) = e
′
0

Γ ⊢ e′
0
: U U <: T

Γ ⊢ (T) e0 : T

[T-UCast]

Method typing

λmark(e,U) = e
′

x̄: Ū, this: T ⊢ e′: V V <: U

U m(Ū x̄) { return e; } ∈ methods(T)

U m(Ū x̄) { return e; } OK in T

Evaluation
fields(C) = T̄

¯
f

(new C(v̄)).fi −→ λmark(vi ,Ti)
[R-Field]

mtype(m, I) = T̄→ T mbody(m, C) = (x̄, e0)

(new C(v̄)).m(ū) −→

[x̄ 7→ λmark(ū,T̄), this 7→ new C(v̄)] λmark(e0,T)

[R-Invk]

mtype(m, I) = T̄→ T mbody(m, I) = (ȳ, e0)

((I) ((Ū x̄)→ e)).m(ū) −→

[ȳ 7→ λmark(ū,T̄)] λmark(e0,T)

[R-Default]

mtype(m, I) = T̄→ T

((I) ((T̄ x̄)→ e)).m(ū) −→

[x̄ 7→ λmark(ū,T̄)] λmark(e,T)

[R-Lam]

I <: T

(T) ((I) ((T̄ x̄)→ e)) −→ (I) ((T̄ x̄)→ e)

[R-Cast-Lam]

Figure 7: Second approach: typing and reduction rules.

methods in addition to the implementation of the abstract methods

present in the interface list ?3, following the method typing rule.

For the body of a method, we use our previously defined expression

generator with the context augmented with the formal parameters

and the special keyword this. A similar approach is adopted when

generating interfaces.

We use QuickCheck to test if all generated class tables are well-

formed, if all generated expressions are well-typed and cast-safe, if

the properties of Progress and Preservation hold for both semantic

approaches, and if both versions are equivalent. After running

many thousands of well-succeeded tests, we gain a high degree of

confidence in the safety of our semantics, however, it is important

to measure how much of code base is covered by the test suite.

Such statistics are provided by Haskell Program Coverage tool [10].

Results of code coverage are presented in Figure 8.

Figure 8: Test coverage results.
Although not having 100% of code coverage, our test suite pro-

vides a strong evidence that proposed semantics enjoys safety prop-

erties by exercising on randomly generated programs of increasing

size. By analyzing test coverage results, we can observe that code

not reached by test cases consists of stuck states on program se-

mantics or error control for not well-typed expressions.

5 Related Work
The use of FJ as the basis for investigations of novel structures for

object-oriented languages has been explored in several projects [1–

3, 9, 14, 16], since it is the current most popular Java formalism.

The study of higher-order mechanisms to enhance expressivity,

conciseness, good structuring, reusability, and factoring of code

has been performed in the last years. Discussions for adding λ-
expressions in Java appear since 2006 [4, 6, 15], however without a

formal description. Specifically, Bellia and Occhiuto [1] modeled a

proposal for closures in Featherweight Java, before Java 8 release,

where closure types were added to the type system as first-class

values, which can be bound to parameters, hence applied to meth-

ods or other closures. Their proposal differs from the current Java

implementation. Bettini et al. [2] formalized λ-expressions in FJ,

after Java 8 release, adding interfaces and intersection types (which
enhances polymorphism), aiming to study the relation between

these features in the Java language. The last is very close to our

approach (since we adapted their function to annotate λ-types), ex-
cept that we model our semantics without the need for intersection

types, and two different approaches for λ-types annotation.
Random testing for finding bugs in compilers and programming

language tools received some attention in recent years. Daniel

et al. [7] generate random Java programs to test refactoring en-

gines in Eclipse and NetBeans. Klein et al. [13] generated random

programs to test an object-oriented library. These projects are re-

lated to ours since they are generating code in the object-oriented

context. The difference of our approach is that we are generating

general purpose class tables and expressions, both well-formed

and well-typed. The work of Palka, Claessen and Hughes [17] used

QuickCheck library to generate Haskell λ-terms to test the GHC

compiler. Their approach for generating terms was adopted in our

project, in the sense we also used QuickCheck and the typing rules

for generating well-typed programs. Unlike their approach, after

the generation of a class table, we generate a list of candidate ex-

pressions, which eliminates the need for backtracking. Furthermore,

the use of QuickCheck helped us on refining our semantics, our

implementation, and allowed testing for type-safety properties.

SBLP’2018, Sep. 2018, São Carlos, SP, Brazil Feitosa, Ribeiro, and Du Bois

6 Conclusion
In this work, we presented two different semantic versions for λ-
expressions and default methods in the context of Featherweight

Java and used property-based testing to verify it. The lightweight

approach provided by QuickCheck allows to experiment with differ-

ent semantic designs and implementations and to quickly check any

changes. During the development of this work, we have changed

our basic definitions many times, both as a result of correcting er-

rors and streamlining the presentation. Ensuring that our changes

were consistent was simply a matter of re-running the test suite.

Encoding the type soundness properties as Haskell functions pro-

vides a clean and concise implementation that helps not only to fix

semantics but also to improve understanding the meaning of our

extensions.

As future work, we intend to work with bi-directional type-

checking in our semantics, to use Coq to provide formally certified

proofs that the presented semantic models do enjoy safety prop-

erties, and also to explore the approach used in our test suite for

other extensions of FJ, besides using other tools like QuickChick

with the same purpose.

Acknowledgement
Thanks to Prof. Wouter Swierstra for his valuable suggestions

and comments on early drafts of this paper.

This work was supported by CAPES/Brazil. PN: 151433.

References
[1] Marco Bellia and M. Eugenia Occhiuto. 2011. Properties of Java Simple Closures.

Fundam. Inf. 109, 3 (Aug. 2011), 237–253. http://dl.acm.org/citation.cfm?id=

2361335.2361338

[2] Lorenzo Bettini, Viviana Bono,Mariangiola Dezani-Ciancaglini, and Betti Venneri.

2018. Java & Lambda: a Featherweight Story. CoRR abs/1801.05052 (2018).

[3] Gavin M Bierman, MJ Parkinson, and AM Pitts. 2003. MJ: An imperative core
calculus for Java and Java with effects. Technical Report. University of Cambridge,

Computer Laboratory.

[4] G Bracha, N Gafter, J Gosling, and P von der Ahe. 2008. Closures for the Java

prog. lang. (aka BGGA). http://javac.info/. (2008).

[5] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for

Random Testing of Haskell Programs. In ACM SIGPLAN Int. Conf. on Func. Prog.
(ICFP ’00). ACM, New York, NY, USA, 268–279. https://doi.org/10.1145/351240.

351266

[6] Stephen Colebourne and S Shulz. 2006. First-class methods: Java-style closures.

(2006).

[7] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. 2007. Automated

Testing of Refactoring Engines. In European Software Eng.Conference and the
ACM SIGSOFT Symposium on The Foundations of Software Eng. (ESEC-FSE ’07).
ACM, New York, NY, USA, 185–194. https://doi.org/10.1145/1287624.1287651

[8] Mourad Debbabi and Myriam Fourati. 2007. A Formal Type System for Java. J.
of Object Technology 6, 8 (2007), 117–184.

[9] Benjamin Delaware, William Cook, and Don Batory. 2011. Product lines of

theorems. In ACM SIGPLAN Notices. ACM, 595–608.

[10] Andy Gill and Colin Runciman. 2007. Haskell Program Coverage. In Proceedings
of the ACM SIGPLAN Workshop on Haskell Workshop (Haskell ’07). ACM, New

York, NY, USA, 1–12. https://doi.org/10.1145/1291201.1291203

[11] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. 2014. The

Java Lang. Specification, Java SE 8. (2014).

[12] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight

Java: A Minimal Core Calculus for Java and GJ. ACM Trans. Program. Lang. Syst.
23, 3 (May 2001), 396–450. https://doi.org/10.1145/503502.503505

[13] Casey Klein, Matthew Flatt, and Robert Bruce Findler. 2010. Random Testing for

Higher-order, Stateful Programs. In Proc. of the ACM Int. Conf. on Object Oriented
Programming Systems Languages and Applications (OOPSLA ’10). ACM, New York,

NY, USA, 555–566. https://doi.org/10.1145/1869459.1869505

[14] Edlira Kuci, Sebastian Erdweg, Oliver Bračevac, Andi Bejleri, and Mira Mezini.

2017. A Co-contextual Type Checker for Featherweight Java. arXiv preprint
arXiv:1705.05828 (2017).

[15] Bob Lee, Doug Lea, and Josh Bloch. 2006. Concise Instance Creation Expressions:

Closure without Complexity. (2006).

[16] Johan Östlund and Tobias Wrigstad. 2010. Welterweight Java. In Proc. of the 48th
Int. Conference on Objects, Models, Components, Patterns (TOOLS’10). Springer-
Verlag, Berlin, Heidelberg, 97–116. http://dl.acm.org/citation.cfm?id=1894386.

1894392

[17] Michal H. Palka, Koen Claessen, Alejandro Russo, and John Hughes. 2011. Testing

an Optimising Compiler by Generating Random Lambda Terms. In Proc. of the
6th Int. Workshop on Automation of Software Test (AST ’11). ACM, New York, NY,

USA, 91–97. https://doi.org/10.1145/1982595.1982615

[18] François Pottier. 2014. Hindley-milner Elaboration in Applicative Style: Func-

tional Pearl. In International Conference on Functional Programming (ICFP ’14).
ACM, New York, NY, USA, 203–212. https://doi.org/10.1145/2628136.2628145

[19] tiobe.com. 2018. TIOBE Index. https://www.tiobe.com/tiobe-index/. (04 2018).

Accessed: 2019-04-09.

http://dl.acm.org/citation.cfm?id=2361335.2361338
http://dl.acm.org/citation.cfm?id=2361335.2361338
http://javac.info/
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/1287624.1287651
https://doi.org/10.1145/1291201.1291203
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/1869459.1869505
http://dl.acm.org/citation.cfm?id=1894386.1894392
http://dl.acm.org/citation.cfm?id=1894386.1894392
https://doi.org/10.1145/1982595.1982615
https://doi.org/10.1145/2628136.2628145
https://www.tiobe.com/tiobe-index/

	Abstract
	1 Introduction
	2 Featherweight Java
	3 The Semantics for -Expressions and Default Methods
	3.1 Syntax and Auxiliary Functions
	3.2 First Approach
	3.3 Second Approach

	4 Validation of Semantic Properties
	5 Related Work
	6 Conclusion
	References

