
Generating Random Well-Typed Featherweight Java
Programs Using QuickCheck

Samuel da Silva Feitosa
PPGC/UFPel

Universidade Federal de Pelotas
Pelotas - RS - Brazil

Email: samuel.feitosa@inf.ufpel.edu.br

Rodrigo Geraldo Ribeiro
PPGCC/UFOP

Universidade Federal de Ouro Preto
Ouro Preto - MG - Brazil

Email: rodrigo@decsi.ufop.br

Andre Rauber Du Bois
PPGC/UFPel

Universidade Federal de Pelotas
Pelotas - RS - Brazil

Email: dubois@inf.ufpel.edu.br

Abstract—Currently, Java is one of the most used program-
ming language, being adopted in many large projects, where
applications reach a level of complexity for which manual testing
and human inspection are not enough to guarantee quality in
software development. Even when using automated unit tests,
such tests rarely cover all interesting cases of code, which
means that a bug could never be discovered, once the code is
tested against the same set of rules over and over again. This
paper addresses the problem of generating random well-typed
programs in the context of Featherweight Java, a well-known
object-oriented calculus, using QuickCheck, a Haskell library
for property-based testing.

I. INTRODUCTION

Nowadays, Java is one of the most popular programming
languages [1]. It is a general-purpose, concurrent, strongly
typed, class-based object-oriented language. Since its release
in 1995 by Sun Microsystems, and currently owned by Oracle
Corporation, Java has been evolving over time, adding features
and programming facilities in its new versions. In a recent ma-
jor release of Java, new features such as lambda expressions,
method references, and functional interfaces, were added to
the core language, offering a programming model that fuses
the object-oriented and functional styles [2].

Considering the growth in adoption of the Java language
for large projects, many applications have reached a level of
complexity for which testing, code reviews, and human in-
spection are no longer sufficient quality-assurance guarantees.
This problem increases the need for tools that employ static
analysis techniques, aiming to explore all possibilities in an
application, in order to guarantee the absence of unexpected
behaviors [3]. Normally, this task is hard to be accomplished
due to computability issues considering certain problem sizes.
For overcoming this situation it is possible to model formal
subsets of the problem applying a certain degree of abstraction,
using only properties of interest, facilitating the understanding
of the problem and also allowing the use of automatic tools [4].

Therefore, an important research area concerns the formal
semantics of languages and type-system specification, which
enables formal proofs and establishing program properties. Be-
sides, solutions can be machine checked providing a degree of
confidence that cannot be reached using informal approaches.
We should note that without a formal semantics it is impossible
to state or prove anything about a language with certainty. For

example, we can’t state that a program meets its specification,
a type system is sound, or that a compiler or an interpreter is
correct [5].

In this context, this work provides the specification of
a test generator for Java programs, using the typing rules
of Featherweight Java [6] (FJ) to generate only well-typed
programs. FJ is a small core calculus of Java with a rigorous
semantic definition of its main core aspects. The motivations
for using FJ as a starting point are that it is compact, so
we can model our test generators in a way that it can be
extended with new features, and its minimal syntax, typing
rules, and operational semantics fit well for modeling and
proving properties for the compiler and programs. As far as
we know, there are no well-typed test generators for FJ. This
work aims to fill this gap by specifying a generator for FJ
programs using QuickCheck, a property-based testing library
for Haskell. We are aware that using automated testing is not
sufficient to ensure correctness, but it can expose bugs before
using more formal approaches, like formalizing the semantics
in a proof assistant.

Specifically, we made the following contributions:

• We implement an interpreter1 for FJ in Haskell, which
can be used as the basis to study new features on the
object-oriented context.

• We provide a type-directed heuristic [7] for constructing
random programs. We conjecture that our specification
is sound with respect to FJ type system, i.e. it generates
only well-typed programs.

• We use QuickCheck as a lightweight manner to check
if all generated programs are well-typed and to test our
interpreter against type soundness proofs in order to
validate the proposed approach.

The remainder of this text is organized as follows: Section II
summarizes FJ. Section III presents the process of generating
well-typed random programs in the context of FJ. Section IV
shows the results of testing type-safety properties of FJ with
QuickCheck. Section V discusses related works. Finally, we
present the final remarks in Section VI.

1The source-code for our interpreter and the test suite is available at https:
//github.com/sfeitosa/fj-qc.

https://github.com/sfeitosa/fj-qc
https://github.com/sfeitosa/fj-qc

II. FEATHERWEIGHT JAVA

Featherweight Java (FJ) [6] is a minimal core calculus for
Java, in the sense that as many features of Java as possible are
omitted, while maintaining the essential flavor of the language
and its type system. However, this fragment is large enough
to include many useful programs. A program in FJ consists
of the declaration of a set of classes and an expression to be
evaluated, that corresponds to the Java’s main method.

FJ is to Java what λ-calculus is to Haskell. It offers similar
operations, providing classes, methods, attributes, inheritance
and dynamic casts with semantics close to Java’s. The Feath-
erweight Java project favors simplicity over expressivity and
offers only five ways to create terms: object creation, method
invocation, attribute access, casting and variables [6]. The
following example shows how classes can be modeled in FJ.
There are three classes, A, B, and Pair, with constructor and
method declarations.

class A extends Object {
A() { super(); }

}
class B extends Object {

B() { super(); }
}
class Pair extends Object {

Object fst;
Object snd;
Pair(X fst, Y snd) {

super();
this.fst=fst;
this.snd=snd;

}
Pair setfst(Object newfst) {

return new Pair(newfst, this.snd);
}

}

In the following example, we can see different kinds of
terms: new A(), new B(), and new Pair(...) are ob-
ject constructors, and .setfst(...) refers to a method
invocation.

new Pair(new A(),new B()).setfst(new B());

FJ semantics provides a purely functional view without side
effects. In other words, attributes in memory are not affected
by object operations [8]. Furthermore, interfaces, overloading,
call to base class methods, null pointers, base types, abstract
methods, statements, access control, and exceptions are not
present in the language. As the language does not allow side
effects, it is possible to formalize the evaluation just using
the FJ syntax, without the need for auxiliary mechanisms to
model the heap [8]. Next, we present the original description
of FJ [6].

A. Syntax and Auxiliary Functions

The abstract syntax of FJ is given in Figure 1, where L rep-
resents classes, K defines constructors, M stands for methods,
and e refers to the possible expressions. The metavariables
A, B, C, D, and E can be used to represent class names, f
and g range over field names, m ranges over method names, x

and y range over variables, d and e range over expressions.
Throughout this paper, we write C as shorthand for a possibly
empty sequence C1, ..., Cn (similarly for f , x, etc.). An empty
sequence is denoted by •, and the length of a sequence x̄
is written #x̄. We use Γ to represent an environment, which
is a finite mapping from variables to types, written x : T ,
and we let Γ(x) denote the type C such that x: C ∈ Γ. We
slightly abuse notation by using set operators on sequences.
Their meaning is as usual.

Syntax

L ::= class declarations
class C extends {C f ;K M}

K ::= constructor declarations
C(C f) {super(f); this.f = f ; }

M ::= method declarations
C m(C x) { return e; }

e ::= expressions
x variable
e.f field access
e.m(e) method invocation
new C(e) object creation
(C) e cast

Fig. 1. Syntactic definitions for FJ.

A class table CT is a mapping from class names, to class
declarations L, and it should satisfy some conditions, such
as each class C should be in CT, except Object, which is a
special class; and there are no cycles in the subtyping relation.
Thereby, a program is a pair (CT, e) of a class table and an
expression.

Figure 2 shows the rules for subtyping, where we write C
<: D when C is a subtype of D.

C <: C

C <: D D <: E
C <: E

CT(C) = class C extends D { ... }
C <: D

Fig. 2. Subtyping relation between classes.

The authors also proposed some auxiliary definitions for
working in the typing and reduction rules. These definition are
given in Figure 3. The rules for field lookup demonstrate how
to obtain the fields of a given class. If the class is Object,
an empty list is returned. Otherwise, it returns a sequence
C f pairing the type of each field with its name, for all fields
declared in the given class and all of its superclasses. The rules
for method type lookup (mtype) show how the type of method
m in class C can be obtained. The first rule of mtype returns
a pair, written B → B, of a sequence of argument types B
and a result type B, when the method m is contained in C.

Otherwise, it returns the result of a call to mtype with the
superclass. A similar approach is used in the rules for method
body lookup, where mbody(m, C) returns a pair (x, e), of a
sequence of parameters x and an expression e. Both mtype
and mbody are partial functions.

Field lookup
fields(Object) = •

CT(C) = class C extends D {C f ; K M}
fields(D) = D g

fields(C) = D g, C f

Method type lookup

CT(C) = class C extends D {C f ; K M}
B m(B x) { return e; } ∈ M

mtype(m, C) = B → B

CT(C) = class C extends D {C f ; K M} m /∈ M
mtype(m, C) = mtype(m, D)

Method body lookup

CT(C) = class C extends D {C f ; K M}
B m(B x) { return e; } ∈ M

mbody(m, C) = (x, e)

CT(C) = class C extends D {C f ; K M} m /∈ M
mbody(m, C) = mbody(m, D)

Fig. 3. Auxiliary definitions.

B. Typing and Reduction Rules

This section presents how the typing rules of FJ are used
to guarantee type soundness, i.e., well-typed terms do not
get stuck, and the reduction rules showing how each step of
evaluation should be processed for FJ syntax. Figure 4 shows
in the left side, the typing rules for expressions, and in the right
side, it shows first the rules to check if methods and classes
are well-formed, then the reduction rules for this calculus. We
omit here the congruence rules, which can be found in the
original paper [6].

The typing judgment for expressions has the form Γ ` e:
C, meaning that in the environment Γ, expression e has type
C. The abbreviations when dealing with sequences is similar
to the previous section. The typing rules are syntax directed,
with one rule for each form of expression, save that there are
three rules for casts.

The rule T-Var results in the type of a variable x according
to the context Γ. If the variable x is not contained in Γ, the
result is undefined. Similarly, the result is undefined when
calling the functions fields, mtype, and mbody in cases
when the target class or the methods do not exist in the
given class. The rule T-Field applies the typing judgment
on the subexpression e0, which results in the type C0. Then

it obtains the fields of class C0, matching the position of
fi in the resultant list, to return the respective type Ci.
The rule T-Invk also applies the typing judgment on the
subexpression e0, which results in the type C0, then it uses
mtype to get the formal parameter types D̄ and the return type
C. The formal parameter types are used to check if the actual
parameters ē are subtypes of them, and in this case, resulting
in the return type C. The rule T-New checks if the actual
parameters are a subtype of the constructor formal parameters,
which are obtained by using the function fields. There are three
rules for casts: one for upcasts, where the subject is a subclass
of the target; one for downcasts, where the target is a subclass
of the subject; and another for stupid casts, where the target is
unrelated to the subject. Even considering that Java’s compiler
rejects as ill-typed an expression containing a stupid cast, the
authors found that a rule of this kind is necessary to formulate
type soundness proofs.

The rule for method typing checks if a method declaration
M is well-formed when it occurs in a class C. It uses the
expression typing judgment on the body of the method,
with the context Γ augmented with variables from the actual
parameters with their declared types, and the special variable
this, with type C. The rule for class typing checks if a class
is well-formed, by checking if the constructor applies super to
the fields of the superclass and initializes the fields declared
in this class, and that each method declaration in the class is
well-formed.

There are only three computation rules, indicating which
expressions can be used in the main program. The first rule
R-Field formalizes how to evaluate an attribute access.
Similarly to the typing rule T-Field, it uses the function
fields, and matches the position i of the field fi in the
resulting list, returning the value vi, which refers to the value
in the position i of the actual parameter list. The second
rule R-Invk shows the evaluation procedure for a method
invocation, where firstly it obtains the method body expression
m of class C through the function mbody, and then performs
substitution of the actual parameters and the special variable
this in the body expression, similar to a beta reduction on
λ-calculus. The last rule R-Cast refers to cast processing,
where the same subexpression new C(ē) is returned in case
the subject class C is subtype of the target class D. There are
also five congruence rules2 (omitted from Figure 4), which
are responsible for the intermediary evaluation steps for the
proposed small-step semantics.

The FJ calculus is intended to be a starting point for
the study of various operational features of object-oriented
programming in Java-like languages, being compact enough to
make rigorous proof feasible. Besides the rules for evaluation
and type-checking rules, the authors present proofs of type
soundness for FJ as another important contribution, which will
be explored by our test suite in the next sections.

2The congruence rules omitted from the text can be found in p. 407 of [6].

Expression typing

Γ ` x: Γ(x)
[T-Var]

Γ ` e0: C0 fields(C0) = C̄ f̄
Γ ` e0.fi: Ci

[T-Field]

mtype(m, C0) = D̄ → C
Γ ` e0 : C0 Γ ` ē : C̄ C̄ <: D̄

Γ ` e0.m(ē) : C
[T-Invk]

fields(C) = D̄ f̄
Γ ` ē : C̄ C̄ <: D̄

Γ ` new C(ē) : C
[T-New]

Γ ` e0 : D D <: C
Γ ` (C) e0 : C

[T-UCast]

Γ ` e0 : D C <: D C 6= D
Γ ` (C) e0 : C

[T-DCast]

Γ ` e0 : D C ≮: D D ≮: C
stupid warning
Γ ` (C) e0 : C

[T-SCast]

Method typing

x̄: C̄, this: C ` e0: E0 E0 <: C0

class C extends D {...}
if mtype(m, D) = D̄ → D0, then C̄ = D̄ and C0 = D0

C0 m(C̄ x̄) { return e0; } OK in C

Class typing

K = C(D̄ ḡ, C̄ f̄) { super(ḡ); this.f̄ = f̄; }
fields(D) = D̄ ḡ M̄ OK in C

class C extends D { C̄ f̄; K M̄ } OK

Evaluation

fields(C) = C̄ f̄
(new C(v̄)).fi −→ vi

[R-Field]

mbody(m, C) = (x̄, e0)
(new C(v̄)).m(d̄) −→ [d̄ 7→ x̄, new C(v̄) 7→ this] e0

[R-Invk]

C <: D
(D) (new C(v̄)) −→ new C(v̄)

[R-Cast]

Fig. 4. Typing and evaluation rules.

III. PROGRAM GENERATION

The task of creating tests for a programming language is
time-consuming. First, because it should respect the program-
ming language requirements, in order to produce a valid test
case. Second, if the test cases are created by a person, it stays
limited by human imagination, where obscure corner cases
could be overlooked. If the compiler writers are producing the
test cases, they can be biased, since they can make assumptions
about their implementation or about what the language should
do. Furthermore, when the language evolves, previous test
cases could be an issue, considering the validity of some old
tests may change if the language semantics is altered [9].

Considering the presented problem, there is a growing
research field exploring random test generation. However,
generating good test programs is not an easy task, since these
programs should have a structure that is accepted by the
compiler, respecting some constraints, which can be as simple
as a program having the correct syntax, or more complex
such as a program being type-correct in a statically-typed
programming language [10].

For generating random programs in the context of FJ, the
generation step has two distinct phases. First, it is necessary
to randomly generate classes to compose the class table.
Second, an expression should be generated by using the class
table. Hence, this section describes the proposed type-directed
procedure for generating well-typed terms, and well-formed
classes by using the QuickCheck library [11].

QuickCheck is an automated testing tool for Haskell. It
defines a formal specification language allowing its use to
specify code under test, and to check if certain properties
hold in a large number of randomly generated test cases. This
library provides several test case generators for constructors of
the Haskell language, but it leaves for its users the definition
of generators for user-defined types. The library provides
combinators which help the programmer in this process.

In this paper, we generalized the approach of [10] for
generating random programs considering that FJ has a nominal
type system instead of a structural one. In this way, each typing
rule is interpreted as a generation rule, both for expression
generation and class table generation. The generation process
for each of them is explained as follows.

A. Expression Generation

We started by defining the process for generating FJ expres-
sions adopting a goal-oriented procedure, which receives as
input an arbitrary class table, an environment and the desired
type for the expression being generated. This desired type
should represent a class name contained in the class table.
The aim of the expression generator is to produce a well-
typed term of the desired type, which can contain free variables
from a given environment. For generating an expression of a
given type, only a subset of typing rules can be used. For
example, the rule T-Var can only be used when generating
a method body expression, because the formal parameters of
a method represent the free variables in the environment, the

rule T-Field can only be used if some class in the class
table has attributes of the desired type, and so on.

The adopted generation method for expressions is obtained
by reading the expression typing rules in Figure 4 backwards,
i.e. to generate an expression that is in the consequence of
a rule it is first necessary to generate expressions that are
in its premises, and then combine them. This way, the goal
of generating a term might involve generating the subgoals
recursively. By using the typing rules we ensure that the
resulting terms are well-typed.

Suppose a class table containing the three classes A, B,
and Pair shown in Section II, an empty environment Γ,
and that we want to generate an expression of type Object.
A typing rule can be formatted using the question mark ?
as a placeholder for that expression, representing the first
generation step, as follows:

Γ ` ? : Object (1)

By looking at the class table, by the rule T-Field, we
can generate an expression of type Object accessing the
attributes fst or snd of class Pair, T-New3, which can be
used to create a new instance of Object, and rule T-UCast4

which can cast any class on class table, since Object is the
superclass of all classes. Lets look at the first one, with the
typing rule T-Field showing another step to generate the
term, as follows.

Γ ` ?1: Pair
fields(Pair) = {Object fst, Object snd}

Γ ` (?1).fst: Object
[T-Field] (2)

The question mark ?1 represents the subexpression that will
be generated as a subgoal. In this sense, we can note the access
to field fst of a subexpression ?1 which should have the type
Pair, as stated by its premise.

To generate an expression for the subgoal, we have to look
at the class table again to generate a term of type Pair. There
are two ways for doing this, by instantiating the class Pair
or invoking the method .setfst(...). Let’s consider the
first, which uses the typing rule T-New, demonstrating another
step in the generation process, as follows:

fields(Pair) = D̄ f̄
Γ ` ?2: C̄ C̄ <: D̄

[T-New]
Γ ` new Pair(?2): Pair

fields(Pair) = {Object fst, Object snd}
[T-Field]

Γ ` (new Pair(?2)).fst: Object

(3)

As can be noted, the generator is applied recursively for
each placeholder. We denote ?2 as a sequence of placeholders,
similarly to previous sections when dealing with sequences of
types or variables. The placeholder ?2 represents the actual

3The class Object is considered a distinguished class name whose
definition does not appear in the class table.

4The rules T-DCast and T-SCast are not used in expression generation
since they can produce cast unsafe expressions.

parameters passed for the class Pair constructor, where each
subexpression should be generated according to the types
returned by the function fields.

The process for generating an expression using the rule
T-Invk is similar, in the sense that it should generate
a subexpression representing the instantiation of an object,
which contains the given method, and should generate the
actual parameters, where each one should have the expected
type according to mtype. The discussed generation rules are
capable of generating every well-typed expression in FJ since
an expression is well-typed if there exists a typing derivation
for it.

We define an algorithm that generates expressions recur-
sively by applying the generation rules using the QuickCheck
library. To prevent non-terminating generation, each recursive
invocation of the algorithm uses a size parameter, which is
decreased in subsequent invocations. When size becomes zero,
only the rules T-Var and T-New can be used, which avoid
excessive recursion.

The algorithm for generating an expression first creates a list
of candidate expressions for each typing rule. A candidate list
for a typing rule can be empty, indicating that it is impossible
to generate an expression of the desired type for that rule, and
as consequence, it is ignored. After producing all the candidate
lists, the algorithm randomly chooses one candidate for each
of those lists, using the QuickCheck function oneof. Over the
selected candidates, we apply the function oneof one more
time, resulting in one candidate expression, which will be used
by our recursive generation rules. We chose this approach to
guarantee an equal distribution for each non-empty typing rule.

B. Class Table Generation

The process for generating the class table is more elabo-
rated, since at first we do not have any information to start
with. What we have is just a set of conditions that a class
table should satisfy, such as: (1) CT(C) = class C... for
every C ∈ dom(CT); (2) Object /∈ dom(CT); (3) for every
class name C (except Object) appearing anywhere in CT, we
have C ∈ dom(CT); and (4) there are no cycles in the subtype
relation induced by CT, i.e. the relation <: is antisymmetric.

We start off by defining three generators, one for class
names, one for variable names, and another for types. Our
generator for class names just chooses randomly an uppercase
letter, which can be easily adapted to generate names with
different lengths. The process is similar to variable names,
except that it is generated a lowercase letter. The generator
for types chooses randomly one class name present in the
class table or Object. After that, we proceed for the class
table generation, using a list of non-duplicated class names.
For each element of that list, our generator produces a class
and inserts it in the class table.

The first step to generate a class, after we have its name,
is to define its base class. Here, the type generator is used. If
the class table is empty, the type generator returns Object,
otherwise, it returns an already produced class. This simple

procedure assures that there are no cycles on the class hierar-
chy. Suppose that a class name Z, and a base class Object
were generated in the first step. Then, the class typing rule is
used for the next steps, as follows:

K = C(?1 ?2) { super(); this.?2 = ?2; }
fields(Object) = • M̄ OK in C

class Z extends Object { ?1 ?2; K M̄ }
[C OK] (4)

The process for filling the class components is divided
into two parts. The first is demonstrated above, where a list
of attributes is randomly generated. Initially, the generator
chooses a random number n to define how many fields the
class should have. Then a list of types with size n is generated
for the placeholder ?1, and a list of non-duplicate variable
names with size n is generated for the placeholder ?2. As we
can note in the generation rule, the function fields is called
with the base class Object, returning an empty sequence.
Then, the constructor is formatted accordingly.

The described process has already generated a minimalist
class, considering that it has a class name, a base class, its
attributes, and a constructor. Before proceeding to the second
part of a class generation, the generator algorithm adds this
minimalist class in the class table. This is necessary to allow
method body expressions to use the class attributes through the
special variable this. Then we move to method generation,
which appears in the generation rule as M̄ OK in C. As we
saw in previous sections, the use of M̄ indicates a possibly
empty list of methods.

The second part to conclude the class generation concerns
to method generation. The process starts generating a random
number n, which represents that it will be generated n
methods for the given class C. A method is represented by
its signature and by its body. For generating the signature,
it is necessary to produce the method name, the return type,
and the formal parameters (types and names). This step is
performed according to the method typing rule, as follows:

?4: ?3, this: C ` e0: E0 E0 <: ?1

class C extends D {...}
if mtype(?2, D) = D̄ → D0, then ?3 = D̄ and ?1 = D0

?1 ?2(?3 ?4) { return e0; }
(5)

In this step, it is randomly produced a return type to be
allocated in the placeholder ?1, already defined in the class
table, and a lowercase letter to compose the method name ?2.
As FJ does not allow method overloading, to avoid methods
with the same name in the class hierarchy, the generator
appends the class name at the end of the method name. After
that, it is generated a list of random size for the formal
parameters. The list of types is placed in ?3, and the non-
duplicate list of names is placed in ?4. As we are generating
exclusive method names for each class, the function mtype(?2,
D) is always undefined. It means that the generated method is
not overriding a method from the base class.

The last step in our method generation is to produce
the method body expression. For example, suppose we are
generating the methods for class Z, which has Object as
a base class, and just the minimalist class Z is defined in
the class table. A possible signature produced in the process
described above could be, as follows:

a: Object, b: Object, this: Z ` ?: E0 E0 <: Z
class Z extends Object {...}

mtype(mZ, Object) = undefined
Z mZ(Object a, Object b) { return ?; }

(6)

Then, the placeholder ? should be filled with a randomly
generated expression, which process was explained in the last
subsection. The important difference here is that the context
is augmented with the variables and types of the formal
parameters and with the special variable this, whose type
is the class being generated. The resulting expression should
be a subtype of the generated return type.

The current design shows a process for generating both a
well-formed class table and a well-typed expression, which
represents the main method of a Java program, following the
formal typing rules in the specification of FJ. Next section
shows how we use the generated programs for testing against
some type-soundness properties. As FJ code represents a valid
Java program, the randomly generated source-code can be used
for testing purpose on the original language.

IV. VALIDATION OF SEMANTICS PROPERTIES

After the presentation of FJ language semantics and
how random tests are generated, we demonstrate how
QuickCheck [11] helps on testing the semantics against some
properties, including those for type-soundness presented in the
FJ original paper, using randomly generated programs.

Considering that testing requires additional programming,
there is a natural risk that the testing code itself contain
bugs [12]. In order to reduce the risk of bugs in our imple-
mentation, we have tested it with QuickCheck, by using our
interpreter and the test generators. We check the following:

• That our custom generator produces only well-formed
class tables.

• That our custom generator produces only well-typed
expressions, according to a randomly generated class
table.

• And if all generated expressions are cast-safe.

The QuickCheck library provides a way to define a property
as a Haskell function. Thus, testing this property involves
running the function on a finite number of inputs when
the number of all inputs is infinite. This way, testing can
only result in disproving the property, by finding a counter-
example or leaving its validity undecided. If a counter-example
is found, it can be used in order to help to fix the bug.
Considering that, we started defining a function to check if
generated class tables are well-formed, as follows:

prop_genwellformedct :: Bool
prop_genwellformedct =
forAll (genClassTable) $
\ct -> Data.List.all

(\(c,cl) -> classTyping cl
Data.Map.empty ct)
(Data.Map.toList ct)

The above code uses the QuickCheck function forAll,
which mimics the universal quantifier ∀, generating a user-
defined number of instances of class tables, and testing if all
produced classes inside a given class table are well-formed,
by running the function classTyping.

We also define a function to test if the generated expressions
are well-typed, as in the following piece of code. This function
starts by generating an instance of a class table ct. After that,
it randomly chooses a type t present in the class table. Then, it
uses the produced ct and an empty environment, to generate
an expression of type t. In the end, by using the function
typeof, it checks if the expression has indeed the type t.

prop_genwelltypedexpr :: Bool
prop_genwelltypedexpr =

forAll (genClassTable) $
\ct -> forAll (genType ct) $
\t -> forAll (genExpression ct

Data.Map.empty t) $
\e -> either (const False)

(\(TypeClass t’) -> t == t’)
(typeof Data.Map.empty ct e)

As a last check for our generators, the following function
tests if a produced expression is cast-safe, i.e., the subject
expression is a subtype of the target type.

prop_gencastsafeexpr :: Bool
prop_gencastsafeexpr =
forAll (genClassTable) $
\ct -> forAll (genType ct) $
\t -> forAll (genExpression ct

Data.Map.empty t) $
\e -> case e of

(Cast c e) -> case (typeof
Data.Map.empty ct e) of

Right (TypeClass t’) ->
subtyping t’ c ct

_ -> False
_ -> True

Thanks to these checks we found and fixed a number of
programming errors in our generator, and in our interpreter
implementation. Although testing can’t state correctness, we
gain a high-degree of confidence in using the generated
programs.

We have used our test suite as a lightweight manner to
check the properties of preservation and progress presented in
the FJ paper. The informal (non-mechanized) proofs were also
modeled as Haskell functions to be used with QuickCheck.

The preservation (subject reduction) is presented by Theo-
rem 2.4.1 (p. 406 of [6]), stating that “If Γ ` e: C and e→ e′,
then Γ ` e′: C′ for some C′ <: C.”. Our function was modeled
as follows:

prop_preservation :: Bool
prop_preservation =
forAll (genClassTable) $
\ct -> forAll (genType ct) $
\t -> forAll (genExpression ct

Data.Map.empty t) $
\e -> either (const False)

(\(TypeClass t’) ->
subtyping t’ t ct)

(case (eval’ ct e) of
Just e’ ->

typeof Data.Map.empty ct e’
_ -> throwError (UnknownError e))

As we can see in the code, after generating an instance for
ct, a type t, and an expression e of type t, a reduction step
is performed by function eval’ over expression e producing
an e’. Then, the function typeof is used to obtain the type
of e’. Last, the subtyping function is used to check if the
expression keeps the typing relation after a reduction step.

Similarly, we modeled (as follows) a function for the
progress property (Theorem 2.4.2, p. 407 [6]), which states
that a well-typed expression does not get stuck.

prop_progress :: Bool
prop_progress =

forAll (genClassTable) $
\ct -> forAll (genType ct) $
\t -> forAll (genExpression ct

Data.Map.empty t) $
\e -> isValue ct e || maybe (False)

(const True) (eval’ ct e)

This function also generates a class table, a type, and an
expression of that type. Then it checks that or the expression
is a value, or it can take a reduction step through the function
eval’.

We ran many thousands of well-succeeded tests for the
presented functions. As a way to measure the quality of our
tests, we check how much of the code base was covered by our
test suite. Such statistics are provided by the Haskell Program
Coverage (HPC) tool [13]. Results of code coverage for each
module (evaluator, type-checker, auxiliary functions, and total,
respectively) are presented in Figure 5.

Fig. 5. Test coverage results.

Figure 6 presents another result of HPC, showing a piece
of code of our evaluator with unreachable code highlighted.

There we can note that to reach the highlighted code it
is necessary: (1) the field f was not found in the fields
of class c; (2) an error processing function eval’ for the
subexpression e. Both cases represent stuck states, which can
be only executed if we have a not well-typed expression. As
stated on type soundness proofs [6], a well-typed expression
does not get stuck.

Fig. 6. Unreachable code on evaluation.

Similarly, Figure 7 shows a piece of code of our type-
checker with unreachable code highlighted.

Fig. 7. Unreachable code on type-checker.

We notice that the highlighted code would be executed only
if: (1) we have an undefined variable in the typing context Γ;
(2) the code is using a field that is not present in the class
of current expression; (3) the type of subexpression e could
not be obtained. In all situations, we have a not well-typed
program.

Finally, Figure 8 shows a piece of code of our auxiliary
functions, where the highlighted code could be reached in two
cases: (1) the class c is not present on the class table; (2)
performing fields on a base class results in an error. This
would only happen if we had a not well-typed program.

Fig. 8. Unreachable code on auxiliary functions.

Although not having 100% of code coverage, our test suite
was capable to verify the main safety properties present in
FJ paper, by exercising on randomly generated programs of
increasing size. By analyzing test coverage results, we could
observe that code not reached by test cases consists of stuck
states on program semantics or error control for expressions
that are not well-typed.

V. RELATED WORK

Property-based testing is a technique for validating code
against an executable specification by automatically generating
test-data, typically in a random and/or exhaustive fashion [14].
However, the generation of random test-data for testing com-
pilers represents a challenge by itself, since it is hard to come
up with a generator of valid test data for compilers, and it is
difficult to provide a specification that decides what should be
the correct behavior of a compiler [10]. As a consequence
of this, random testing for finding bugs in compilers and
programming language tools received some attention in recent
years.

The testing tool Csmith [15] is a generator of programs
for the C language, supporting a large number of language
features, which was used to find a number of bugs in compilers
such as GCC, LLVM, etc. Le et al. [16] developed a methodol-
ogy that uses differential testing for C compilers. Lindig [17]
created a tool for testing the C function calling convention
of the GCC compiler, which randomly generates types of
functions. There are also efforts on randomly generate case
tests for other languages [18]. The main difference between
these projects to ours is that our generators were created
by using a formal specification of typing rules. Furthermore,
we used property-based testing for checking type-soundness
proofs.

More specifically, Daniel et al. [19] generate random Java
programs to test refactoring engines in Eclipse and NetBeans.
Klein et al. [20] generated random programs to test an object-
oriented library. Allwood and Eisenbach [9] also used FJ as
a basis to define a test suite for the mainstream programming
language in question, testing how much of coverage their
approach was capable to obtain. These projects are closed
related to ours since they are generating code in the object-
oriented context. The difference of our approach is that we
generate randomly complete classes and expressions, both
well-formed and well-typed by using the formal specification
of typing rules in the process of generation. Another difference
is that none of them used property-based testing in their
approaches.

The work of Palka, Claessen and Hughes [10] used
QuickCheck library to generate λ-terms to test the GHC
compiler. Their approach for generating terms was adopted
in our project, in the sense we also used QuickCheck and
the typing rules for generating well-typed terms. Unlike their
approach, by reading the generated class table, we generate
a list of candidate expressions, which eliminates the need for
backtracking. Furthermore, the use of QuickCheck helped us
on refining our semantics, our implementation, and allowed
testing for type-safety properties.

There is also an effort on automatic random test generation
from the definition of a type-system. The work of Fetscher et
al. [21] presents a generic method for randomly generating
well-typed expressions in the context of PLT Redex [22].
The works of Lampropoulos et al. [23], [24] present different
ways to automatically generate random expressions by using

QuickChick [25], an existing tool for property-based testing
in Coq. These approaches differ to ours in the sense that
the authors provide tools to generate terms automatically
according to a formal specification, usually by annotating the
typing rules, while in our work we focus on a specific type-
system of a high-level programming language.

VI. CONCLUSION

In this work, we presented a type-directed heuristic for
constructing random programs in the context of Feather-
weight Java and used property-based testing to verify it. The
lightweight approach provided by QuickCheck allows to ex-
periment with different semantic designs and implementations
and to quickly check any changes. During the development
of this work, we have changed our implementations many
times, both as a result of correcting errors and streamlining
the presentation. Ensuring that our changes were consistent
was simply a matter of re-running the test suite. Encoding
the type soundness properties as Haskell functions provides a
clean and concise implementation that helps not only to fix
bugs but also to improve understanding the meaning of the
presented semantics properties.

As future work, we intend to use Coq to provide for-
mally certified proofs that the FJ semantics does enjoy safety
properties and also to explore the approach used in our test
suite for other extensions of FJ, besides using other tools like
QuickChick with the same purpose.

REFERENCES

[1] tiobe.com, “TIOBE Index,” https://www.tiobe.com/tiobe-index/, 04
2018, accessed: 2018-04-09.

[2] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, “The Java
Language Specification, Java SE 8 edition (Java series),” 2014.

[3] M. Debbabi and M. Fourati, “A formal type system for Java.” Journal
of Object Technology, vol. 6, no. 8, pp. 117–184, 2007.

[4] D. Filaretti and S. Maffeis, “An executable formal semantics of PHP,”
in Proceedings of the 28th European Conference on ECOOP 2014
— Object-Oriented Programming - Volume 8586. New York, NY,
USA: Springer-Verlag New York, Inc., 2014, pp. 567–592. [Online].
Available: http://dx.doi.org/10.1007/978-3-662-44202-9 23

[5] D. Bogdanas and G. Roşu, “K-Java: A complete semantics of Java,”
SIGPLAN Not., vol. 50, no. 1, pp. 445–456, Jan. 2015. [Online].
Available: http://doi.acm.org/10.1145/2775051.2676982

[6] A. Igarashi, B. C. Pierce, and P. Wadler, “Featherweight Java: A
minimal core calculus for Java and GJ,” ACM Trans. Program. Lang.
Syst., vol. 23, no. 3, pp. 396–450, May 2001. [Online]. Available:
http://doi.acm.org/10.1145/503502.503505

[7] C. McBride, “Djinn, monotonic.” in PAR@ ITP, 2010, pp. 14–17.
[8] B. C. Pierce, Types and Programming Languages, 1st ed. The MIT

Press, 2002.
[9] T. O. R. Allwood and S. Eisenbach, “Tickling Java with a feather,”

Electron. Notes Theor. Comput. Sci., vol. 238, no. 5, pp. 3–16, Oct.
2009. [Online]. Available: http://dx.doi.org/10.1016/j.entcs.2009.09.037

[10] M. H. Palka, K. Claessen, A. Russo, and J. Hughes, “Testing
an optimising compiler by generating random lambda terms,”
in Proceedings of the 6th International Workshop on Automation of
Software Test, ser. AST ’11. New York, NY, USA: ACM, 2011, pp. 91–
97. [Online]. Available: http://doi.acm.org/10.1145/1982595.1982615

[11] K. Claessen and J. Hughes, “QuickCheck: A lightweight tool for
random testing of Haskell programs,” in Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming, ser.
ICFP ’00. New York, NY, USA: ACM, 2000, pp. 268–279. [Online].
Available: http://doi.acm.org/10.1145/351240.351266

[12] J. Midtgaard, M. N. Justesen, P. Kasting, F. Nielson, and H. R. Nielson,
“Effect-driven QuickChecking of compilers,” Proc. ACM Program.
Lang., vol. 1, no. ICFP, pp. 15:1–15:23, Aug. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3110259

[13] A. Gill and C. Runciman, “Haskell program coverage,” in Proceedings
of the ACM SIGPLAN Workshop on Haskell Workshop, ser. Haskell
’07. New York, NY, USA: ACM, 2007, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1291201.1291203

[14] R. Blanco, D. Miller, and A. Momigliano, “Property-based testing
via proof reconstruction work-in-progress,” in LFMTP 17: Logical
Frameworks and Meta-Languages: Theory and Practice, 2017.

[15] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” SIGPLAN Not., vol. 46, no. 6, pp. 283–294, Jun.
2011. [Online]. Available: http://doi.acm.org/10.1145/1993316.1993532

[16] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” SIGPLAN Not., vol. 49, no. 6, pp. 216–226, Jun. 2014.
[Online]. Available: http://doi.acm.org/10.1145/2666356.2594334

[17] C. Lindig, “Random testing of C calling conventions,” in Proceedings
of the Sixth International Symposium on Automated Analysis-driven
Debugging, ser. AADEBUG’05. New York, NY, USA: ACM, 2005, pp.
3–12. [Online]. Available: http://doi.acm.org/10.1145/1085130.1085132

[18] D. Drienyovszky, D. Horpácsi, and S. Thompson, “QuickChecking
refactoring tools,” in Proceedings of the 9th ACM SIGPLAN Workshop
on Erlang, ser. Erlang ’10. New York, NY, USA: ACM, 2010, pp. 75–
80. [Online]. Available: http://doi.acm.org/10.1145/1863509.1863521

[19] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated testing
of refactoring engines,” in Proceedings of the the 6th Joint Meeting
of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering,
ser. ESEC-FSE ’07. New York, NY, USA: ACM, 2007, pp. 185–194.
[Online]. Available: http://doi.acm.org/10.1145/1287624.1287651

[20] C. Klein, M. Flatt, and R. B. Findler, “Random testing for higher-order,
stateful programs,” in Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications,
ser. OOPSLA ’10. New York, NY, USA: ACM, 2010, pp. 555–566.
[Online]. Available: http://doi.acm.org/10.1145/1869459.1869505

[21] B. Fetscher, K. Claessen, M. Pałka, J. Hughes, and R. B. Findler,
“Making random judgments: Automatically generating well-typed terms
from the definition of a type-system,” in Programming Languages and
Systems, J. Vitek, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2015, pp. 383–405.

[22] M. Felleisen, R. B. Findler, and M. Flatt, Semantics engineering with
PLT Redex, 2009.

[23] L. Lampropoulos, D. Gallois-Wong, C. Hritcu, J. Hughes, B. C.
Pierce, and L. Xia, “Beginner’s luck: A language for property-based
generators,” CoRR, vol. abs/1607.05443, 2016. [Online]. Available:
http://arxiv.org/abs/1607.05443

[24] L. Lampropoulos, Z. Paraskevopoulou, and B. C. Pierce, “Generating
good generators for inductive relations,” Proceedings of the ACM on
Programming Languages, vol. 2, no. POPL, p. 45, 2017.

[25] M. Dénès, C. Hritcu, L. Lampropoulos, Z. Paraskevopoulou, and B. C.
Pierce, “Quickchick: Property-based testing for Coq,” in The Coq
Workshop, 2014.

https://www.tiobe.com/tiobe-index/
http://dx.doi.org/10.1007/978-3-662-44202-9_23
http://doi.acm.org/10.1145/2775051.2676982
http://doi.acm.org/10.1145/503502.503505
http://dx.doi.org/10.1016/j.entcs.2009.09.037
http://doi.acm.org/10.1145/1982595.1982615
http://doi.acm.org/10.1145/351240.351266
http://doi.acm.org/10.1145/3110259
http://doi.acm.org/10.1145/1291201.1291203
http://doi.acm.org/10.1145/1993316.1993532
http://doi.acm.org/10.1145/2666356.2594334
http://doi.acm.org/10.1145/1085130.1085132
http://doi.acm.org/10.1145/1863509.1863521
http://doi.acm.org/10.1145/1287624.1287651
http://doi.acm.org/10.1145/1869459.1869505
http://arxiv.org/abs/1607.05443

	Introduction
	Featherweight Java
	Syntax and Auxiliary Functions
	Typing and Reduction Rules

	Program Generation
	Expression Generation
	Class Table Generation

	Validation of Semantics Properties
	Related Work
	Conclusion
	References

